File size: 14,315 Bytes
f005c29
26c25af
 
1a51878
3f26801
f005c29
3f26801
f005c29
 
 
5977e24
26c25af
 
 
 
 
 
f005c29
9742c2f
26c25af
 
 
 
 
 
 
de6c8c8
26c25af
de6c8c8
 
 
 
 
18d052b
26c25af
de6c8c8
 
 
 
3b44c41
 
 
 
 
 
 
 
 
f005c29
 
5977e24
f005c29
2e7094f
f005c29
5977e24
f005c29
5977e24
f005c29
5977e24
2e7094f
5977e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f005c29
5977e24
f005c29
 
 
 
3f26801
dd740f6
f005c29
 
 
 
5977e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
language:
- en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- DFKI-SLT/few-nerd
metrics:
- f1
- recall
- precision
pipeline_tag: token-classification
widget:
- text: Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic
    to Paris.
  example_title: Amelia Earhart
- text: Leonardo di ser Piero da Vinci painted the Mona Lisa based on Italian noblewoman
    Lisa del Giocondo.
  example_title: Leonardo da Vinci
base_model: bert-base-cased
model-index:
- name: SpanMarker w. bert-base-cased on finegrained, supervised FewNERD by Tom Aarsen
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: finegrained, supervised FewNERD
      type: DFKI-SLT/few-nerd
      config: supervised
      split: test
      revision: 2e3e727c63604fbfa2ff4cc5055359c84fe5ef2c
    metrics:
    - type: f1
      value: 0.7053
      name: F1
    - type: precision
      value: 0.7101
      name: Precision
    - type: recall
      value: 0.7005
      name: Recall
---

# SpanMarker with bert-base-cased on FewNERD

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co/bert-base-cased) as the underlying encoder.

## Model Details

### Model Description

- **Model Type:** SpanMarker
- **Encoder:** [bert-base-cased](https://huggingface.co/bert-base-cased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
- **Language:** en
- **License:** cc-by-sa-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label                                    | Examples                                                                                                 |
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
| art-broadcastprogram                     | "Street Cents", "Corazones", "The Gale Storm Show : Oh , Susanna"                                        |
| art-film                                 | "Bosch", "L'Atlantide", "Shawshank Redemption"                                                           |
| art-music                                | "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover", "Hollywood Studio Symphony"   |
| art-other                                | "Aphrodite of Milos", "Venus de Milo", "The Today Show"                                                  |
| art-painting                             | "Production/Reproduction", "Touit", "Cofiwch Dryweryn"                                                   |
| art-writtenart                           | "Imelda de ' Lambertazzi", "Time", "The Seven Year Itch"                                                 |
| building-airport                         | "Luton Airport", "Newark Liberty International Airport", "Sheremetyevo International Airport"            |
| building-hospital                        | "Hokkaido University Hospital", "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center" |
| building-hotel                           | "The Standard Hotel", "Radisson Blu Sea Plaza Hotel", "Flamingo Hotel"                                   |
| building-library                         | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek"                                 |
| building-other                           | "Communiplex", "Alpha Recording Studios", "Henry Ford Museum"                                            |
| building-restaurant                      | "Fatburger", "Carnegie Deli", "Trumbull"                                                                 |
| building-sportsfacility                  | "Glenn Warner Soccer Facility", "Boston Garden", "Sports Center"                                         |
| building-theater                         | "Pittsburgh Civic Light Opera", "Sanders Theatre", "National Paris Opera"                                |
| event-attack/battle/war/militaryconflict | "Easter Offensive", "Vietnam War", "Jurist"                                                              |
| event-disaster                           | "the 1912 North Mount Lyell Disaster", "1693 Sicily earthquake", "1990s North Korean famine"             |
| event-election                           | "March 1898 elections", "1982 Mitcham and Morden by-election", "Elections to the European Parliament"    |
| event-other                              | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement"                  |
| event-protest                            | "French Revolution", "Russian Revolution", "Iranian Constitutional Revolution"                           |
| event-sportsevent                        | "National Champions", "World Cup", "Stanley Cup"                                                         |
| location-GPE                             | "Mediterranean Basin", "the Republic of Croatia", "Croatian"                                             |
| location-bodiesofwater                   | "Atatürk Dam Lake", "Norfolk coast", "Arthur Kill"                                                       |
| location-island                          | "Laccadives", "Staten Island", "new Samsat district"                                                     |
| location-mountain                        | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge"                                                 |
| location-other                           | "Northern City Line", "Victoria line", "Cartuther"                                                       |
| location-park                            | "Gramercy Park", "Painted Desert Community Complex Historic District", "Shenandoah National Park"        |
| location-road/railway/highway/transit    | "Friern Barnet Road", "Newark-Elizabeth Rail Link", "NJT"                                                |
| organization-company                     | "Dixy Chicken", "Texas Chicken", "Church 's Chicken"                                                     |
| organization-education                   | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College"           |
| organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court"                                                      |
| organization-media/newspaper             | "TimeOut Melbourne", "Clash", "Al Jazeera"                                                               |
| organization-other                       | "Defence Sector C", "IAEA", "4th Army"                                                                   |
| organization-politicalparty              | "Shimpotō", "Al Wafa ' Islamic", "Kenseitō"                                                              |
| organization-religion                    | "Jewish", "Christian", "UPCUSA"                                                                          |
| organization-showorganization            | "Lizzy", "Bochumer Symphoniker", "Mr. Mister"                                                            |
| organization-sportsleague                | "China League One", "First Division", "NHL"                                                              |
| organization-sportsteam                  | "Tottenham", "Arsenal", "Luc Alphand Aventures"                                                          |
| other-astronomything                     | "Zodiac", "Algol", "`` Caput Larvae ''"                                                                  |
| other-award                              | "GCON", "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger"       |
| other-biologything                       | "N-terminal lipid", "BAR", "Amphiphysin"                                                                 |
| other-chemicalthing                      | "uranium", "carbon dioxide", "sulfur"                                                                    |
| other-currency                           | "$", "Travancore Rupee", "lac crore"                                                                     |
| other-disease                            | "French Dysentery Epidemic of 1779", "hypothyroidism", "bladder cancer"                                  |
| other-educationaldegree                  | "Master", "Bachelor", "BSc ( Hons ) in physics"                                                          |
| other-god                                | "El", "Fujin", "Raijin"                                                                                  |
| other-language                           | "Breton-speaking", "English", "Latin"                                                                    |
| other-law                                | "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act"     |
| other-livingthing                        | "insects", "monkeys", "patchouli"                                                                        |
| other-medical                            | "Pediatrics", "amitriptyline", "pediatrician"                                                            |
| person-actor                             | "Ellaline Terriss", "Tchéky Karyo", "Edmund Payne"                                                       |
| person-artist/author                     | "George Axelrod", "Gaetano Donizett", "Hicks"                                                            |
| person-athlete                           | "Jaguar", "Neville", "Tozawa"                                                                            |
| person-director                          | "Bob Swaim", "Richard Quine", "Frank Darabont"                                                           |
| person-other                             | "Richard Benson", "Holden", "Campbell"                                                                   |
| person-politician                        | "William", "Rivière", "Emeric"                                                                           |
| person-scholar                           | "Stedman", "Wurdack", "Stalmine"                                                                         |
| person-soldier                           | "Helmuth Weidling", "Krukenberg", "Joachim Ziegler"                                                      |
| product-airplane                         | "Luton", "Spey-equipped FGR.2s", "EC135T2 CPDS"                                                          |
| product-car                              | "100EX", "Corvettes - GT1 C6R", "Phantom"                                                                |
| product-food                             | "red grape", "yakiniku", "V. labrusca"                                                                   |
| product-game                             | "Airforce Delta", "Hardcore RPG", "Splinter Cell"                                                        |
| product-other                            | "Fairbottom Bobs", "X11", "PDP-1"                                                                        |
| product-ship                             | "Congress", "Essex", "HMS `` Chinkara ''"                                                                |
| product-software                         | "AmiPDF", "Apdf", "Wikipedia"                                                                            |
| product-train                            | "High Speed Trains", "55022", "Royal Scots Grey"                                                         |
| product-weapon                           | "AR-15 's", "ZU-23-2M Wróbel", "ZU-23-2MR Wróbel II"                                                     |

## Uses

### Direct Use

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd-fine-super")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd-fine-super")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-fewnerd-fine-super-finetuned")
```
</details>

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 24.4945 | 267 |
| Entities per sentence | 0   | 2.5832  | 88  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions

- Python: 3.9.16
- SpanMarker: 1.3.1.dev
- Transformers : 4.29.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.3
- Tokenizers: 0.13.2