Update README significantly
Browse files
README.md
CHANGED
@@ -6,6 +6,7 @@ tags:
|
|
6 |
- token-classification
|
7 |
- ner
|
8 |
- named-entity-recognition
|
|
|
9 |
pipeline_tag: token-classification
|
10 |
widget:
|
11 |
- text: "Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris."
|
@@ -46,19 +47,100 @@ metrics:
|
|
46 |
- precision
|
47 |
---
|
48 |
|
49 |
-
# SpanMarker
|
50 |
|
51 |
-
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
52 |
|
53 |
-
##
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
|
63 |
```python
|
64 |
from span_marker import SpanMarkerModel
|
@@ -69,4 +151,60 @@ model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd
|
|
69 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
70 |
```
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- token-classification
|
7 |
- ner
|
8 |
- named-entity-recognition
|
9 |
+
- generated_from_span_marker_trainer
|
10 |
pipeline_tag: token-classification
|
11 |
widget:
|
12 |
- text: "Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris."
|
|
|
47 |
- precision
|
48 |
---
|
49 |
|
50 |
+
# SpanMarker with bert-base-cased on FewNERD
|
51 |
|
52 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co/models/bert-base-cased) as the underlying encoder.
|
53 |
|
54 |
+
## Model Details
|
55 |
|
56 |
+
### Model Description
|
57 |
|
58 |
+
- **Model Type:** SpanMarker
|
59 |
+
- **Encoder:** [bert-base-cased](https://huggingface.co/models/bert-base-cased)
|
60 |
+
- **Maximum Sequence Length:** 256 tokens
|
61 |
+
- **Maximum Entity Length:** 8 words
|
62 |
+
- **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
|
63 |
+
- **Language:** en
|
64 |
+
- **License:** cc-by-sa-4.0
|
65 |
+
|
66 |
+
### Model Sources
|
67 |
+
|
68 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
69 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
70 |
+
|
71 |
+
### Model Labels
|
72 |
+
| Label | Examples |
|
73 |
+
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
|
74 |
+
| art-broadcastprogram | "Street Cents", "Corazones", "The Gale Storm Show : Oh , Susanna" |
|
75 |
+
| art-film | "Bosch", "L'Atlantide", "Shawshank Redemption" |
|
76 |
+
| art-music | "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover", "Hollywood Studio Symphony" |
|
77 |
+
| art-other | "Aphrodite of Milos", "Venus de Milo", "The Today Show" |
|
78 |
+
| art-painting | "Production/Reproduction", "Touit", "Cofiwch Dryweryn" |
|
79 |
+
| art-writtenart | "Imelda de ' Lambertazzi", "Time", "The Seven Year Itch" |
|
80 |
+
| building-airport | "Luton Airport", "Newark Liberty International Airport", "Sheremetyevo International Airport" |
|
81 |
+
| building-hospital | "Hokkaido University Hospital", "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center" |
|
82 |
+
| building-hotel | "The Standard Hotel", "Radisson Blu Sea Plaza Hotel", "Flamingo Hotel" |
|
83 |
+
| building-library | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek" |
|
84 |
+
| building-other | "Communiplex", "Alpha Recording Studios", "Henry Ford Museum" |
|
85 |
+
| building-restaurant | "Fatburger", "Carnegie Deli", "Trumbull" |
|
86 |
+
| building-sportsfacility | "Glenn Warner Soccer Facility", "Boston Garden", "Sports Center" |
|
87 |
+
| building-theater | "Pittsburgh Civic Light Opera", "Sanders Theatre", "National Paris Opera" |
|
88 |
+
| event-attack/battle/war/militaryconflict | "Easter Offensive", "Vietnam War", "Jurist" |
|
89 |
+
| event-disaster | "the 1912 North Mount Lyell Disaster", "1693 Sicily earthquake", "1990s North Korean famine" |
|
90 |
+
| event-election | "March 1898 elections", "1982 Mitcham and Morden by-election", "Elections to the European Parliament" |
|
91 |
+
| event-other | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement" |
|
92 |
+
| event-protest | "French Revolution", "Russian Revolution", "Iranian Constitutional Revolution" |
|
93 |
+
| event-sportsevent | "National Champions", "World Cup", "Stanley Cup" |
|
94 |
+
| location-GPE | "Mediterranean Basin", "the Republic of Croatia", "Croatian" |
|
95 |
+
| location-bodiesofwater | "Atatürk Dam Lake", "Norfolk coast", "Arthur Kill" |
|
96 |
+
| location-island | "Laccadives", "Staten Island", "new Samsat district" |
|
97 |
+
| location-mountain | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge" |
|
98 |
+
| location-other | "Northern City Line", "Victoria line", "Cartuther" |
|
99 |
+
| location-park | "Gramercy Park", "Painted Desert Community Complex Historic District", "Shenandoah National Park" |
|
100 |
+
| location-road/railway/highway/transit | "Friern Barnet Road", "Newark-Elizabeth Rail Link", "NJT" |
|
101 |
+
| organization-company | "Dixy Chicken", "Texas Chicken", "Church 's Chicken" |
|
102 |
+
| organization-education | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College" |
|
103 |
+
| organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court" |
|
104 |
+
| organization-media/newspaper | "TimeOut Melbourne", "Clash", "Al Jazeera" |
|
105 |
+
| organization-other | "Defence Sector C", "IAEA", "4th Army" |
|
106 |
+
| organization-politicalparty | "Shimpotō", "Al Wafa ' Islamic", "Kenseitō" |
|
107 |
+
| organization-religion | "Jewish", "Christian", "UPCUSA" |
|
108 |
+
| organization-showorganization | "Lizzy", "Bochumer Symphoniker", "Mr. Mister" |
|
109 |
+
| organization-sportsleague | "China League One", "First Division", "NHL" |
|
110 |
+
| organization-sportsteam | "Tottenham", "Arsenal", "Luc Alphand Aventures" |
|
111 |
+
| other-astronomything | "Zodiac", "Algol", "`` Caput Larvae ''" |
|
112 |
+
| other-award | "GCON", "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger" |
|
113 |
+
| other-biologything | "N-terminal lipid", "BAR", "Amphiphysin" |
|
114 |
+
| other-chemicalthing | "uranium", "carbon dioxide", "sulfur" |
|
115 |
+
| other-currency | "$", "Travancore Rupee", "lac crore" |
|
116 |
+
| other-disease | "French Dysentery Epidemic of 1779", "hypothyroidism", "bladder cancer" |
|
117 |
+
| other-educationaldegree | "Master", "Bachelor", "BSc ( Hons ) in physics" |
|
118 |
+
| other-god | "El", "Fujin", "Raijin" |
|
119 |
+
| other-language | "Breton-speaking", "English", "Latin" |
|
120 |
+
| other-law | "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act" |
|
121 |
+
| other-livingthing | "insects", "monkeys", "patchouli" |
|
122 |
+
| other-medical | "Pediatrics", "amitriptyline", "pediatrician" |
|
123 |
+
| person-actor | "Ellaline Terriss", "Tchéky Karyo", "Edmund Payne" |
|
124 |
+
| person-artist/author | "George Axelrod", "Gaetano Donizett", "Hicks" |
|
125 |
+
| person-athlete | "Jaguar", "Neville", "Tozawa" |
|
126 |
+
| person-director | "Bob Swaim", "Richard Quine", "Frank Darabont" |
|
127 |
+
| person-other | "Richard Benson", "Holden", "Campbell" |
|
128 |
+
| person-politician | "William", "Rivière", "Emeric" |
|
129 |
+
| person-scholar | "Stedman", "Wurdack", "Stalmine" |
|
130 |
+
| person-soldier | "Helmuth Weidling", "Krukenberg", "Joachim Ziegler" |
|
131 |
+
| product-airplane | "Luton", "Spey-equipped FGR.2s", "EC135T2 CPDS" |
|
132 |
+
| product-car | "100EX", "Corvettes - GT1 C6R", "Phantom" |
|
133 |
+
| product-food | "red grape", "yakiniku", "V. labrusca" |
|
134 |
+
| product-game | "Airforce Delta", "Hardcore RPG", "Splinter Cell" |
|
135 |
+
| product-other | "Fairbottom Bobs", "X11", "PDP-1" |
|
136 |
+
| product-ship | "Congress", "Essex", "HMS `` Chinkara ''" |
|
137 |
+
| product-software | "AmiPDF", "Apdf", "Wikipedia" |
|
138 |
+
| product-train | "High Speed Trains", "55022", "Royal Scots Grey" |
|
139 |
+
| product-weapon | "AR-15 's", "ZU-23-2M Wróbel", "ZU-23-2MR Wróbel II" |
|
140 |
+
|
141 |
+
## Uses
|
142 |
|
143 |
+
### Direct Use
|
144 |
|
145 |
```python
|
146 |
from span_marker import SpanMarkerModel
|
|
|
151 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
152 |
```
|
153 |
|
154 |
+
### Downstream Use
|
155 |
+
You can finetune this model on your own dataset.
|
156 |
+
|
157 |
+
<details><summary>Click to expand</summary>
|
158 |
+
|
159 |
+
```python
|
160 |
+
from span_marker import SpanMarkerModel, Trainer
|
161 |
+
|
162 |
+
# Download from the 🤗 Hub
|
163 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd-fine-super")
|
164 |
+
|
165 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
166 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
167 |
+
|
168 |
+
# Initialize a Trainer using the pretrained model & dataset
|
169 |
+
trainer = Trainer(
|
170 |
+
model=model,
|
171 |
+
train_dataset=dataset["train"],
|
172 |
+
eval_dataset=dataset["validation"],
|
173 |
+
)
|
174 |
+
trainer.train()
|
175 |
+
trainer.save_model("tomaarsen/span-marker-bert-base-fewnerd-fine-super-finetuned")
|
176 |
+
```
|
177 |
+
</details>
|
178 |
+
|
179 |
+
## Training Details
|
180 |
+
|
181 |
+
### Training Set Metrics
|
182 |
+
| Training set | Min | Median | Max |
|
183 |
+
|:----------------------|:----|:--------|:----|
|
184 |
+
| Sentence length | 1 | 24.4945 | 267 |
|
185 |
+
| Entities per sentence | 0 | 2.5832 | 88 |
|
186 |
+
|
187 |
+
### Training Hyperparameters
|
188 |
+
- learning_rate: 5e-05
|
189 |
+
- train_batch_size: 32
|
190 |
+
- eval_batch_size: 32
|
191 |
+
- seed: 42
|
192 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
193 |
+
- lr_scheduler_type: linear
|
194 |
+
- lr_scheduler_warmup_ratio: 0.1
|
195 |
+
- num_epochs: 3
|
196 |
+
|
197 |
+
### Training Hardware
|
198 |
+
- **On Cloud**: No
|
199 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
200 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
201 |
+
- **RAM Size**: 31.78 GB
|
202 |
+
|
203 |
+
### Framework Versions
|
204 |
+
|
205 |
+
- Python: 3.9.16
|
206 |
+
- SpanMarker: 1.3.1.dev
|
207 |
+
- Transformers : 4.29.2
|
208 |
+
- PyTorch: 2.0.1+cu118
|
209 |
+
- Datasets: 2.14.3
|
210 |
+
- Tokenizers: 0.13.2
|