tomaarsen's picture
tomaarsen HF staff
Update README.md
e88732e verified
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- 100K<n<1M
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: The strangely dressed guys, one wearing an orange wig, sunglasses
with peace signs, and a karate costume with an orannge belt, another wearing a
curly blue wig, heart shaped sunglasses, and a karate outfit painted with leaves,
and the third wearing pink underwear, a black afro, and giant sunglasses.
sentences:
- A blonde female is reaching into a golf hole while holding two golf balls.
- There are people wearing outfits.
- The people are naked.
- source_sentence: A group of children playing and having a good time.
sentences:
- The kids are together.
- The children are reading books.
- People are pointing at a Middle-aged woman.
- source_sentence: Three children dressed in winter clothes are walking through the
woods while pushing cargo along.
sentences:
- A woman is sitting.
- Three childre are dressed in summer clothes.
- Three children are dressed in winter clothes.
- source_sentence: A young child is enjoying the water and rock scenery with their
dog.
sentences:
- The child and dog are enjoying some fresh air.
- The teenage boy is taking his cat for a walk beside the water.
- A lady in blue has birds around her.
- source_sentence: 'Boca da Corrida Encumeada (moderate; 5 hours): views of Curral
das Freiras and the valley of Ribeiro do Poco.'
sentences:
- 'Boca da Corrida Encumeada is a moderate text that takes 5 hours to complete. '
- This chapter is in the advance category.
- I think it is something that we need.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 118.81134392463773
energy_consumed: 0.30566177669432554
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 1.661
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.9003645200486027
name: Cosine Accuracy
- type: dot_accuracy
value: 0.09705346294046173
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8968712029161604
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8974787363304981
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9003645200486027
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9149644424269935
name: Cosine Accuracy
- type: dot_accuracy
value: 0.08564079285822364
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.911484339536995
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9134513542139506
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9149644424269935
name: Max Accuracy
---
# MPNet base trained on AllNLI triplets
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
'Then he ran.',
'The people are running.',
'The man is on his bike.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `all-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9004 |
| dot_accuracy | 0.0971 |
| manhattan_accuracy | 0.8969 |
| euclidean_accuracy | 0.8975 |
| **max_accuracy** | **0.9004** |
#### Triplet
* Dataset: `all-nli-test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:----------|
| cosine_accuracy | 0.915 |
| dot_accuracy | 0.0856 |
| manhattan_accuracy | 0.9115 |
| euclidean_accuracy | 0.9135 |
| **max_accuracy** | **0.915** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 100,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
| 0 | 0 | - | - | 0.6832 | - |
| 0.016 | 100 | 2.6355 | 1.0725 | 0.7924 | - |
| 0.032 | 200 | 0.9206 | 0.8342 | 0.8080 | - |
| 0.048 | 300 | 1.2567 | 0.7855 | 0.8133 | - |
| 0.064 | 400 | 0.7949 | 0.8857 | 0.7974 | - |
| 0.08 | 500 | 0.7583 | 0.9487 | 0.7872 | - |
| 0.096 | 600 | 1.0022 | 1.1312 | 0.7848 | - |
| 0.112 | 700 | 0.8178 | 1.2282 | 0.7895 | - |
| 0.128 | 800 | 0.9997 | 1.5132 | 0.7488 | - |
| 0.144 | 900 | 1.1173 | 1.4605 | 0.7473 | - |
| 0.16 | 1000 | 1.0089 | 1.3794 | 0.7543 | - |
| 0.176 | 1100 | 1.0235 | 1.4188 | 0.7640 | - |
| 0.192 | 1200 | 1.0031 | 1.2465 | 0.7570 | - |
| 0.208 | 1300 | 0.8286 | 1.4176 | 0.7426 | - |
| 0.224 | 1400 | 0.8411 | 1.1914 | 0.7600 | - |
| 0.24 | 1500 | 0.8389 | 1.1719 | 0.7820 | - |
| 0.256 | 1600 | 0.7144 | 1.1167 | 0.7691 | - |
| 0.272 | 1700 | 0.881 | 1.0747 | 0.7902 | - |
| 0.288 | 1800 | 0.8657 | 1.1576 | 0.7966 | - |
| 0.304 | 1900 | 0.7323 | 1.0122 | 0.8322 | - |
| 0.32 | 2000 | 0.6578 | 1.1248 | 0.8273 | - |
| 0.336 | 2100 | 0.6037 | 1.1194 | 0.8269 | - |
| 0.352 | 2200 | 0.641 | 1.1410 | 0.8341 | - |
| 0.368 | 2300 | 0.7843 | 1.0600 | 0.8328 | - |
| 0.384 | 2400 | 0.8222 | 0.9988 | 0.8161 | - |
| 0.4 | 2500 | 0.7287 | 1.2026 | 0.8395 | - |
| 0.416 | 2600 | 0.6035 | 0.8802 | 0.8273 | - |
| 0.432 | 2700 | 0.8275 | 1.1631 | 0.8458 | - |
| 0.448 | 2800 | 0.8483 | 0.9218 | 0.8316 | - |
| 0.464 | 2900 | 0.8813 | 1.1187 | 0.8147 | - |
| 0.48 | 3000 | 0.7408 | 0.9582 | 0.8246 | - |
| 0.496 | 3100 | 0.7886 | 0.9364 | 0.8261 | - |
| 0.512 | 3200 | 0.6064 | 0.8338 | 0.8302 | - |
| 0.528 | 3300 | 0.6415 | 0.7895 | 0.8650 | - |
| 0.544 | 3400 | 0.5766 | 0.7525 | 0.8571 | - |
| 0.56 | 3500 | 0.6212 | 0.8605 | 0.8572 | - |
| 0.576 | 3600 | 0.5773 | 0.7460 | 0.8419 | - |
| 0.592 | 3700 | 0.6104 | 0.7480 | 0.8580 | - |
| 0.608 | 3800 | 0.5754 | 0.7215 | 0.8657 | - |
| 0.624 | 3900 | 0.5525 | 0.7900 | 0.8630 | - |
| 0.64 | 4000 | 0.7802 | 0.7443 | 0.8612 | - |
| 0.656 | 4100 | 0.9796 | 0.7756 | 0.8748 | - |
| 0.672 | 4200 | 0.9355 | 0.6917 | 0.8796 | - |
| 0.688 | 4300 | 0.7081 | 0.6442 | 0.8832 | - |
| 0.704 | 4400 | 0.6868 | 0.6395 | 0.8891 | - |
| 0.72 | 4500 | 0.5964 | 0.5983 | 0.8820 | - |
| 0.736 | 4600 | 0.6618 | 0.5754 | 0.8861 | - |
| 0.752 | 4700 | 0.6957 | 0.6177 | 0.8803 | - |
| 0.768 | 4800 | 0.6375 | 0.5577 | 0.8881 | - |
| 0.784 | 4900 | 0.5481 | 0.5496 | 0.8835 | - |
| 0.8 | 5000 | 0.6626 | 0.5728 | 0.8949 | - |
| 0.816 | 5100 | 0.5192 | 0.5329 | 0.8935 | - |
| 0.832 | 5200 | 0.5856 | 0.5188 | 0.8935 | - |
| 0.848 | 5300 | 0.5142 | 0.5252 | 0.8920 | - |
| 0.864 | 5400 | 0.6404 | 0.5641 | 0.8885 | - |
| 0.88 | 5500 | 0.5466 | 0.5209 | 0.8929 | - |
| 0.896 | 5600 | 0.575 | 0.5170 | 0.8961 | - |
| 0.912 | 5700 | 0.626 | 0.5095 | 0.9001 | - |
| 0.928 | 5800 | 0.5631 | 0.4817 | 0.8984 | - |
| 0.944 | 5900 | 0.7301 | 0.4996 | 0.8984 | - |
| 0.96 | 6000 | 0.7712 | 0.5160 | 0.9014 | - |
| 0.976 | 6100 | 0.6203 | 0.5000 | 0.9007 | - |
| 0.992 | 6200 | 0.0005 | 0.4996 | 0.9004 | - |
| 1.0 | 6250 | - | - | - | 0.9150 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.306 kWh
- **Carbon Emitted**: 0.119 kg of CO2
- **Hours Used**: 1.661 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->