|
---
|
|
language:
|
|
- en
|
|
library_name: sentence-transformers
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- loss:GISTEmbedLoss
|
|
base_model: distilbert/distilroberta-base
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
- pearson_manhattan
|
|
- spearman_manhattan
|
|
- pearson_euclidean
|
|
- spearman_euclidean
|
|
- pearson_dot
|
|
- spearman_dot
|
|
- pearson_max
|
|
- spearman_max
|
|
widget:
|
|
- source_sentence: A woman sings.
|
|
sentences:
|
|
- The woman is singing.
|
|
- A story book is open.
|
|
- The men have blonde hair.
|
|
- source_sentence: a baby smiling
|
|
sentences:
|
|
- A baby is unhappy.
|
|
- a fireman on a ladder
|
|
- Five men stand on chairs.
|
|
- source_sentence: The boy scowls
|
|
sentences:
|
|
- A boy is outdoors.
|
|
- a man is wearing blue
|
|
- Two women are sleeping.
|
|
- source_sentence: There's a dock
|
|
sentences:
|
|
- A boat docked on a river.
|
|
- He is playing a song.
|
|
- The baby is in the crib.
|
|
- source_sentence: an eagle flies
|
|
sentences:
|
|
- A bird flying.
|
|
- The woman is outside.
|
|
- The people are sleeping.
|
|
pipeline_tag: sentence-similarity
|
|
co2_eq_emissions:
|
|
emissions: 1.6492452883656235
|
|
energy_consumed: 0.004242955498982829
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
ram_total_size: 31.777088165283203
|
|
hours_used: 0.021
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
model-index:
|
|
- name: SentenceTransformer based on distilbert/distilroberta-base
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: sts dev
|
|
type: sts-dev
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.7695103533338594
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.8046160770503588
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.7673329964610834
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.7756781613323356
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.7718833134570839
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.7784941712509205
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.22148844887336572
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.2092109979282621
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.7718833134570839
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.8046160770503588
|
|
name: Spearman Max
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: sts test
|
|
type: sts-test
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.7270251484636511
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.7463390012771995
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.7295418823252019
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.7198414342133578
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.7347198114628469
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.724025904164009
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.19404927455056548
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.1791431711812991
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.7347198114628469
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.7463390012771995
|
|
name: Spearman Max
|
|
---
|
|
|
|
# SentenceTransformer based on distilbert/distilroberta-base
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Dataset:**
|
|
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
|
- **Language:** en
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-v3")
|
|
# Run inference
|
|
sentences = [
|
|
'an eagle flies',
|
|
'A bird flying.',
|
|
'The woman is outside.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
* Dataset: `sts-dev`
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| pearson_cosine | 0.7695 |
|
|
| **spearman_cosine** | **0.8046** |
|
|
| pearson_manhattan | 0.7673 |
|
|
| spearman_manhattan | 0.7757 |
|
|
| pearson_euclidean | 0.7719 |
|
|
| spearman_euclidean | 0.7785 |
|
|
| pearson_dot | 0.2215 |
|
|
| spearman_dot | 0.2092 |
|
|
| pearson_max | 0.7719 |
|
|
| spearman_max | 0.8046 |
|
|
|
|
#### Semantic Similarity
|
|
* Dataset: `sts-test`
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| pearson_cosine | 0.727 |
|
|
| **spearman_cosine** | **0.7463** |
|
|
| pearson_manhattan | 0.7295 |
|
|
| spearman_manhattan | 0.7198 |
|
|
| pearson_euclidean | 0.7347 |
|
|
| spearman_euclidean | 0.724 |
|
|
| pearson_dot | 0.194 |
|
|
| spearman_dot | 0.1791 |
|
|
| pearson_max | 0.7347 |
|
|
| spearman_max | 0.7463 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### sentence-transformers/all-nli
|
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
|
|
* Size: 10,000 training samples
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | anchor | positive | negative |
|
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
|
| type | string | string | string |
|
|
| details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
|
|
* Samples:
|
|
| anchor | positive | negative |
|
|
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/losses.html#gistembedloss) with these parameters:
|
|
```json
|
|
{'guide': SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
), 'temperature': 0.01}
|
|
```
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### sentence-transformers/all-nli
|
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
|
|
* Size: 1,000 evaluation samples
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | anchor | positive | negative |
|
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string | string |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
|
|
* Samples:
|
|
| anchor | positive | negative |
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
|
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
|
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/losses.html#gistembedloss) with these parameters:
|
|
```json
|
|
{'guide': SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
), 'temperature': 0.01}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 128
|
|
- `per_device_eval_batch_size`: 128
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: False
|
|
- `per_device_train_batch_size`: 128
|
|
- `per_device_eval_batch_size`: 128
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: None
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
|
|:------:|:----:|:------:|:-----------------------:|:------------------------:|
|
|
| 0 | 0 | - | 0.6375 | - |
|
|
| 0.1266 | 10 | 2.5172 | 0.7944 | - |
|
|
| 0.2532 | 20 | 1.8059 | 0.8061 | - |
|
|
| 0.3797 | 30 | 1.6805 | 0.8163 | - |
|
|
| 0.5063 | 40 | 1.8153 | 0.8167 | - |
|
|
| 0.6329 | 50 | 1.7177 | 0.8121 | - |
|
|
| 0.7595 | 60 | 1.8622 | 0.8031 | - |
|
|
| 0.8861 | 70 | 1.8056 | 0.8046 | - |
|
|
| 1.0 | 79 | - | - | 0.7463 |
|
|
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 0.004 kWh
|
|
- **Carbon Emitted**: 0.002 kg of CO2
|
|
- **Hours Used**: 0.021 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.6
|
|
- Sentence Transformers: 3.0.0.dev0
|
|
- Transformers: 4.41.0.dev0
|
|
- PyTorch: 2.3.0+cu121
|
|
- Accelerate: 0.26.1
|
|
- Datasets: 2.18.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### GISTEmbedLoss
|
|
```bibtex
|
|
@misc{solatorio2024gistembed,
|
|
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
|
author={Aivin V. Solatorio},
|
|
year={2024},
|
|
eprint={2402.16829},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.LG}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |