|
--- |
|
language: |
|
- en |
|
- ja |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tag: moe |
|
license: apache-2.0 |
|
--- |
|
|
|
# Swallow-MX |
|
|
|
Our Swallow-MX model has undergone continuous pre-training from the Mixtral-8x7B-Instruct-v0.1, primarily with the addition of Japanese language data. |
|
|
|
![logo](./logo.png) |
|
|
|
## Model Details |
|
|
|
* **Model type**: Please refer to Mixtral technical report for details on the model architecture. |
|
* **Language(s)**: Japanese English |
|
* **Tokenizer**: This model utilizes the same tokenizer as employed by Mixtral-8x7B-Instruct-v0.1. |
|
* **Contact**: swallow[at]nlp.c.titech.ac.jp |
|
|
|
## Base Model Performance |
|
|
|
### Japanese version |
|
|
|
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en| |
|
|---|---|---|---|---|---|---|---|---|---| |
|
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot| |
|
| Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 | |
|
| Swallow | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 | |
|
| Swallow-Plus | 7B | 0.5478 | 0.5493 | 0.6030 | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 | |
|
| Swallow-NVE | 7B | 0.5433 | 0.5425 | 0.5729 | 0.8684 | 0.2117 | 0.1200 | 0.2405 | 0.1512 | |
|
| Llama 2 | 13B | 0.6997 | 0.4415 | 0.4170 | 0.8533 | 0.2139 | 0.1320 | 0.2146 | 0.1982 | |
|
| Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 | |
|
| Swallow-NVE | 13B | 0.7712 | 0.5438 | 0.6351 | 0.9030 | 0.2294 | 0.2120 | 0.2735 | 0.1817 | |
|
| Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | **0.2398** | |
|
| Swallow | 70B | 0.9348 | **0.6290** | 0.6960 | 0.9176 | 0.2266 | **0.4840** | **0.3043** | 0.2298 | |
|
| Swallow-NVE | 70B | **0.9410** | 0.5759 | **0.7024** | **0.9254** | **0.2758** | 0.4720 | 0.3042 | 0.2322 | |
|
|Mixtral-8x7B-v0.1|8x7B|0.8347|0.5335|0.3549|0.8847|0.2192|0.3120|0.1970|0.1987| |
|
|Swallow-MX-NVE|8x7B|0.9258|0.5843|0.5687|0.9148|0.2589|0.4360|0.2705|0.2074| |
|
|
|
Please note that Swallow-MX-NVE is not derived from Mixtral-8x7B-v0.1, but rather underwent continued pre-training from Mixtral-8x7B-Instruct-v0.1. |
|
|
|
### English version |
|
|
|
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K| |
|
|---|---|---|---|---|---|---|---| |
|
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot| |
|
| Llama 2 | 7B | 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 | |
|
| Swallow | 7B | 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 | |
|
| Swallow-Plus | 7B | 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 | |
|
| Swallow-NVE | 7B | 0.3180 | 0.5079 | 0.5329 | 0.2919 | 0.8817 | 0.0986 | |
|
| Llama 2 | 13B | 0.3760 | 0.7255 | 0.6148 | 0.3681 | 0.9140 | 0.2403 | |
|
| Swallow | 13B | 0.3500 | 0.5852 | 0.5660 | 0.3406 | 0.9075 | 0.2039 | |
|
| Swallow-NVE | 13B | 0.3460 | 0.6025 | 0.5700 | 0.3478 | 0.9006 | 0.1751 | |
|
| Llama 2 | 70B | **0.4280** | **0.8239** | **0.6742** | 0.3770 | **0.9290** | 0.5284 | |
|
| Swallow | 70B | 0.4220 | 0.7756 | 0.6458 | 0.3745 | 0.9204 | 0.4867 | |
|
| Swallow-NVE | 70B | 0.4240 | 0.7817 | 0.6439 | 0.3451 | 0.9256 | 0.4943 | |
|
|Mixtral-8x7B-v0.1|8x7B|0.3960|0.7989|0.6678|**0.3842**|0.9204|**0.5747**| |
|
|Swallow-MX-NVE|8x7B|0.3740|0.7847|0.6520|0.3801|0.9170|0.5694| |
|
|
|
Please note that Swallow-MX-NVE is not derived from Mixtral-8x7B-v0.1, but rather underwent continued pre-training from Mixtral-8x7B-Instruct-v0.1. |
|
|
|
## Usage |
|
|
|
First install additional dependencies in [requirements.txt](./requirements.txt): |
|
|
|
```sh |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### Use the base model |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "tokyotech-llm/Swallow-MX-NVE-hf" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
prompt = "東京工業大学の主なキャンパスは、" |
|
input_ids = tokenizer.encode( |
|
prompt, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
) |
|
tokens = model.generate( |
|
input_ids.to(device=model.device), |
|
max_new_tokens=128, |
|
temperature=0.99, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
|
|
out = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(out) |
|
``` |
|
|
|
## Training Datasets |
|
|
|
### Continual Pre-Training |
|
The following datasets were used for continual pre-training. |
|
|
|
- [Algebraic Stack](https://huggingface.co/datasets/EleutherAI/proof-pile-2) |
|
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) |
|
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) |
|
- [Swallow Corpus](https://chokkan.org/temp/tokyotech-llm/swallow-corpus) |
|
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile) |
|
- [The Vault](https://github.com/FSoft-AI4Code/TheVault) |
|
|
|
## Risks and Limitations |
|
|
|
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. |
|
|
|
## Acknowledgements |
|
|
|
We thank Mistral AI for releasing Mixtral-8x7B-Instruct-v0.1 under an open license for others to build on. |
|
|
|
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. |
|
|
|
## License |
|
|
|
apache-2.0 |
|
|
|
## Authors |
|
|
|
Here are the team members: |
|
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: |
|
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) |
|
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/) |
|
- [Hiroki Iida](https://meshidenn.github.io/) |
|
- [Mengsay Loem](https://loem-ms.github.io/) |
|
- [Shota Hirai](https://huggingface.co/Kotemo428) |
|
- [Kakeru Hattori](https://aya-se.vercel.app/) |
|
- [Masanari Ohi](https://twitter.com/stjohn2007) |
|
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: |
|
- [Rio Yokota](https://twitter.com/rioyokota) |
|
- [Kazuki Fujii](https://twitter.com/okoge_kaz) |
|
- [Taishi Nakamura](https://twitter.com/Setuna7777_2) |
|
|