|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: sentence-similarity |
|
inference: false |
|
--- |
|
|
|
# Monarch Mixer-BERT |
|
|
|
An 80M checkpoint of M2-BERT, pretrained with sequence length 2048, and it has been fine-tuned for long-context retrieval. |
|
|
|
Check out the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109) and our [blog post]() on retrieval for more on how we trained this model for long sequence. |
|
|
|
This model was trained by Jon Saad-Falcon, Dan Fu, and Simran Arora. |
|
|
|
Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it! |
|
|
|
## How to use |
|
|
|
You can load this model using Hugging Face `AutoModel`: |
|
```python |
|
from transformers import AutoModelForSequenceClassification |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
"togethercomputer/m2-bert-80M-2k-retrieval", |
|
trust_remote_code=True |
|
) |
|
``` |
|
|
|
You should expect to see a large error message about unused parameters for FlashFFTConv. |
|
If you'd like to load the model with FlashFFTConv, you can check out our [GitHub](https://github.com/HazyResearch/m2/tree/main). |
|
|
|
This model generates embeddings for retrieval. The embeddings have a dimensionality of 768: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
max_seq_length = 2048 |
|
testing_string = "Every morning, I make a cup of coffee to start my day." |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
"togethercomputer/m2-bert-80M-2k-retrieval", |
|
trust_remote_code=True |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"bert-base-uncased", |
|
model_max_length=max_seq_length |
|
) |
|
input_ids = tokenizer( |
|
[testing_string], |
|
return_tensors="pt", |
|
padding="max_length", |
|
return_token_type_ids=False, |
|
truncation=True, |
|
max_length=max_seq_length |
|
) |
|
|
|
outputs = model(**input_ids) |
|
embeddings = outputs['sentence_embedding'] |
|
``` |
|
|
|
You can also get embeddings from this model using the Together API as follows (you can find your API key [here](https://api.together.xyz/settings/api-keys)): |
|
```python |
|
import os |
|
import requests |
|
|
|
def generate_together_embeddings(text: str, model_api_string: str, api_key: str): |
|
url = "https://api.together.xyz/api/v1/embeddings" |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"Authorization": f"Bearer {api_key}" |
|
} |
|
session = requests.Session() |
|
response = session.post( |
|
url, |
|
headers=headers, |
|
json={ |
|
"input": text, |
|
"model": model_api_string |
|
} |
|
) |
|
if response.status_code != 200: |
|
raise ValueError(f"Request failed with status code {response.status_code}: {response.text}") |
|
return response.json()['data'][0]['embedding'] |
|
|
|
print(generate_together_embeddings( |
|
'Hello world', |
|
'togethercomputer/m2-bert-80M-2k-retrieval', |
|
os.environ['TOGETHER_API_KEY'])[:10] |
|
) |
|
``` |
|
|
|
## Acknowledgments |
|
|
|
Alycia Lee helped with AutoModel support. |
|
|
|
## Citation |
|
|
|
If you use this model, or otherwise found our work valuable, you can cite us as follows: |
|
``` |
|
@inproceedings{fu2023monarch, |
|
title={Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture}, |
|
author={Fu, Daniel Y and Arora, Simran and Grogan, Jessica and Johnson, Isys and Eyuboglu, Sabri and Thomas, Armin W and Spector, Benjamin and Poli, Michael and Rudra, Atri and R{\'e}, Christopher}, |
|
booktitle={Advances in Neural Information Processing Systems}, |
|
year={2023} |
|
} |
|
``` |