language: | |
- en | |
license: mit | |
base_model: microsoft/mdeberta-v3-base | |
tags: | |
- generated_from_trainer | |
datasets: | |
- tmnam20/VieGLUE | |
metrics: | |
- accuracy | |
- f1 | |
model-index: | |
- name: mdeberta-v3-base-mrpc-1 | |
results: | |
- task: | |
name: Text Classification | |
type: text-classification | |
dataset: | |
name: tmnam20/VieGLUE/MRPC | |
type: tmnam20/VieGLUE | |
config: mrpc | |
split: validation | |
args: mrpc | |
metrics: | |
- name: Accuracy | |
type: accuracy | |
value: 0.8431372549019608 | |
- name: F1 | |
type: f1 | |
value: 0.8792452830188678 | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# mdeberta-v3-base-mrpc-1 | |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MRPC dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.3835 | |
- Accuracy: 0.8431 | |
- F1: 0.8792 | |
- Combined Score: 0.8612 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 32 | |
- eval_batch_size: 16 | |
- seed: 1 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3.0 | |
### Training results | |
### Framework versions | |
- Transformers 4.36.0 | |
- Pytorch 2.1.0+cu121 | |
- Datasets 2.15.0 | |
- Tokenizers 0.15.0 | |