pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- doping
- anti-doping
pretty_name: Domain-adapted BERT for anti-doping practice
license: apache-2.0
language:
- en
library_name: sentence-transformers
Domain-adapted BERT for anti-doping practice
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Pretrained transformers model with the largest Wikipedia using a masked language modeling (MLM) objective, fitted using Transformer-based Sequential Denoising Auto-Encoder for unsupervised sentence embedding learning with one objective : anti-doping domain adaptation.
This way, the model learns an inner representation of the anti-doping language in the training set that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the model as inputs.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("timotheeplanes/anti-doping-bert-base")
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 7289 with parameters:
{'batch_size': 6, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 0,
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 3e-05
},
"scheduler": "constantlr",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
If you use this code in your research, please use the following BibTeX entry.
@misc{louisbrulenaudet2023,
author = {Brulé Naudet (L.), Planes (T.).},
title = {Domain-adapted BERT for anti-doping practice},
year = {2023}
howpublished = {\url{https://huggingface.co/timotheeplanes/anti-doping-bert-base}},
}