timotheeplanes's picture
Update README.md (#2)
7c65df8
|
raw
history blame
4.14 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
  - doping
  - anti-doping
pretty_name: Domain-adapted BERT for anti-doping practice
license: apache-2.0
language:
  - en
library_name: sentence-transformers

Domain-adapted BERT for anti-doping practice

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Pretrained transformers model with the largest Wikipedia using a masked language modeling (MLM) objective, fitted using Transformer-based Sequential Denoising Auto-Encoder for unsupervised sentence embedding learning with one objective : anti-doping domain adaptation.

This way, the model learns an inner representation of the anti-doping language in the training set that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the model as inputs.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer("timotheeplanes/anti-doping-bert-base")
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 7289 with parameters:

{'batch_size': 6, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 0,
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 3e-05
    },
    "scheduler": "constantlr",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

If you use this code in your research, please use the following BibTeX entry.

@misc{louisbrulenaudet2023,
  author =       {Brulé Naudet (L.), Planes (T.).},
  title =        {Domain-adapted BERT for anti-doping practice},
  year =         {2023}
  howpublished = {\url{https://huggingface.co/timotheeplanes/anti-doping-bert-base}},
}