timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
pcuenq's picture
pcuenq HF staff
transformers tag
ed58962 verified
metadata
tags:
  - image-classification
  - timm
  - transformers
library_name: timm
license: apache-2.0
datasets:
  - imagenet-1k

Model card for vit_pwee_patch16_reg1_gap_256.sbb_in1k

A Vision Transformer (ViT) image classification model. This is a timm specific variation of the architecture with registers, global average pooling.

There are a number of models in the lower end of model scales that originate in timm:

variant width mlp width (mult) heads depth timm orig
tiny 192 768 (4) 3 12 n
wee 256 1280 (5) 4 14 y
pwee 256 1280 (5) 4 16 (parallel) y
small 384 1536 (4) 6 12 n
little 320 1792 (5.6) 5 14 y
medium 512 2048 (4) 8 12 y
mediumd 512 2048 (4) 8 20 y
betwixt 640 2560 (4) 10 12 y
base 768 3072 (4) 12 12 n

Trained on ImageNet-1k in timm using recipe template described below.

Recipe details:

  • Searching for better baselines. Influced by Swin/DeiT/DeiT-III but w/ increased weight decay, moderate (in12k) to high (in1k) augmentation. Layer-decay used for fine-tune. Some runs used BCE and/or NAdamW instead of AdamW.
  • See train_hparams.yaml for specifics of each model.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('vit_pwee_patch16_reg1_gap_256.sbb_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'vit_pwee_patch16_reg1_gap_256.sbb_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 256, 16, 16])
    #  torch.Size([1, 256, 16, 16])
    #  torch.Size([1, 256, 16, 16])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'vit_pwee_patch16_reg1_gap_256.sbb_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 257, 256) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Citation

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{darcet2023vision,
  title={Vision Transformers Need Registers},
  author={Darcet, Timoth{'e}e and Oquab, Maxime and Mairal, Julien and Bojanowski, Piotr},
  journal={arXiv preprint arXiv:2309.16588},
  year={2023}
}
@article{dosovitskiy2020vit,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={ICLR},
  year={2021}
}