Model card for mambaout_small.in1k
A MambaOut image classification model. Pretrained on ImageNet-1k by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 48.5
- GMACs: 9.0
- Activations (M): 27.7
- Image size: train = 224 x 224, test = 288 x 288
- Dataset: ImageNet-1k
- Papers:
- MambaOut: Do We Really Need Mamba for Vision?: https://arxiv.org/abs/2405.07992
- Original: https://github.com/yuweihao/MambaOut
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('mambaout_small.in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mambaout_small.in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 56, 56, 96])
# torch.Size([1, 28, 28, 192])
# torch.Size([1, 14, 14, 384])
# torch.Size([1, 7, 7, 576])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mambaout_small.in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 7, 7, 576) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
By Top-1
Citation
@article{yu2024mambaout,
title={MambaOut: Do We Really Need Mamba for Vision?},
author={Yu, Weihao and Wang, Xinchao},
journal={arXiv preprint arXiv:2405.07992},
year={2024}
}
- Downloads last month
- 210
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.