Add model
Browse files- README.md +161 -0
- config.json +32 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_name: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
- imagenet-12k
|
10 |
+
---
|
11 |
+
# Model card for hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k
|
12 |
+
|
13 |
+
A Hiera image classification model w/ resizeable abs-win position embeddings and layer-scale. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman using "Searching for better ViT baselines" recipe. Patch dropout used during training using Hiera mask units, appeared to make pos embed more generalizable to other resolutions.
|
14 |
+
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
- **Model Type:** Image classification / feature backbone
|
18 |
+
- **Model Stats:**
|
19 |
+
- Params (M): 34.4
|
20 |
+
- GMACs: 7.7
|
21 |
+
- Activations (M): 21.2
|
22 |
+
- Image size: 256 x 256
|
23 |
+
- **Pretrain Dataset:** ImageNet-12k
|
24 |
+
- **Dataset:** ImageNet-1k
|
25 |
+
- **Papers:**
|
26 |
+
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: https://arxiv.org/abs/2306.00989
|
27 |
+
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
|
28 |
+
- Window Attention is Bugged: How not to Interpolate Position Embeddings: https://arxiv.org/abs/2311.05613
|
29 |
+
- **Original:** https://github.com/facebookresearch/hiera
|
30 |
+
|
31 |
+
## Model Usage
|
32 |
+
### Image Classification
|
33 |
+
```python
|
34 |
+
from urllib.request import urlopen
|
35 |
+
from PIL import Image
|
36 |
+
import timm
|
37 |
+
|
38 |
+
img = Image.open(urlopen(
|
39 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
40 |
+
))
|
41 |
+
|
42 |
+
model = timm.create_model('hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k', pretrained=True)
|
43 |
+
model = model.eval()
|
44 |
+
|
45 |
+
# get model specific transforms (normalization, resize)
|
46 |
+
data_config = timm.data.resolve_model_data_config(model)
|
47 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
48 |
+
|
49 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
50 |
+
|
51 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
52 |
+
```
|
53 |
+
|
54 |
+
### Feature Map Extraction
|
55 |
+
```python
|
56 |
+
from urllib.request import urlopen
|
57 |
+
from PIL import Image
|
58 |
+
import timm
|
59 |
+
|
60 |
+
img = Image.open(urlopen(
|
61 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
62 |
+
))
|
63 |
+
|
64 |
+
model = timm.create_model(
|
65 |
+
'hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k',
|
66 |
+
pretrained=True,
|
67 |
+
features_only=True,
|
68 |
+
)
|
69 |
+
model = model.eval()
|
70 |
+
|
71 |
+
# get model specific transforms (normalization, resize)
|
72 |
+
data_config = timm.data.resolve_model_data_config(model)
|
73 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
74 |
+
|
75 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
76 |
+
|
77 |
+
for o in output:
|
78 |
+
# print shape of each feature map in output
|
79 |
+
# e.g.:
|
80 |
+
# torch.Size([1, 96, 64, 64])
|
81 |
+
# torch.Size([1, 192, 32, 32])
|
82 |
+
# torch.Size([1, 384, 16, 16])
|
83 |
+
# torch.Size([1, 768, 8, 8])
|
84 |
+
|
85 |
+
print(o.shape)
|
86 |
+
```
|
87 |
+
|
88 |
+
### Image Embeddings
|
89 |
+
```python
|
90 |
+
from urllib.request import urlopen
|
91 |
+
from PIL import Image
|
92 |
+
import timm
|
93 |
+
|
94 |
+
img = Image.open(urlopen(
|
95 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
96 |
+
))
|
97 |
+
|
98 |
+
model = timm.create_model(
|
99 |
+
'hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k',
|
100 |
+
pretrained=True,
|
101 |
+
num_classes=0, # remove classifier nn.Linear
|
102 |
+
)
|
103 |
+
model = model.eval()
|
104 |
+
|
105 |
+
# get model specific transforms (normalization, resize)
|
106 |
+
data_config = timm.data.resolve_model_data_config(model)
|
107 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
108 |
+
|
109 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
110 |
+
|
111 |
+
# or equivalently (without needing to set num_classes=0)
|
112 |
+
|
113 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
114 |
+
# output is unpooled, a (1, 64, 768) shaped tensor
|
115 |
+
|
116 |
+
output = model.forward_head(output, pre_logits=True)
|
117 |
+
# output is a (1, num_features) shaped tensor
|
118 |
+
```
|
119 |
+
|
120 |
+
## Model Comparison
|
121 |
+
### By Top-1
|
122 |
+
|
123 |
+
|model |top1 |top5 |param_count|
|
124 |
+
|---------------------------------|------|------|-----------|
|
125 |
+
|hiera_huge_224.mae_in1k_ft_in1k |86.834|98.01 |672.78 |
|
126 |
+
|hiera_large_224.mae_in1k_ft_in1k |86.042|97.648|213.74 |
|
127 |
+
|hiera_base_plus_224.mae_in1k_ft_in1k|85.134|97.158|69.9 |
|
128 |
+
|hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k |84.912|97.260|35.01 |
|
129 |
+
|hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k |84.560|97.106|35.01 |
|
130 |
+
|hiera_base_224.mae_in1k_ft_in1k |84.49 |97.032|51.52 |
|
131 |
+
|hiera_small_224.mae_in1k_ft_in1k |83.884|96.684|35.01 |
|
132 |
+
|hiera_tiny_224.mae_in1k_ft_in1k |82.786|96.204|27.91 |
|
133 |
+
|
134 |
+
## Citation
|
135 |
+
```bibtex
|
136 |
+
@article{ryali2023hiera,
|
137 |
+
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
|
138 |
+
author={Ryali, Chaitanya and Hu, Yuan-Ting and Bolya, Daniel and Wei, Chen and Fan, Haoqi and Huang, Po-Yao and Aggarwal, Vaibhav and Chowdhury, Arkabandhu and Poursaeed, Omid and Hoffman, Judy and Malik, Jitendra and Li, Yanghao and Feichtenhofer, Christoph},
|
139 |
+
journal={ICML},
|
140 |
+
year={2023}
|
141 |
+
}
|
142 |
+
```
|
143 |
+
```bibtex
|
144 |
+
@misc{rw2019timm,
|
145 |
+
author = {Ross Wightman},
|
146 |
+
title = {PyTorch Image Models},
|
147 |
+
year = {2019},
|
148 |
+
publisher = {GitHub},
|
149 |
+
journal = {GitHub repository},
|
150 |
+
doi = {10.5281/zenodo.4414861},
|
151 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
152 |
+
}
|
153 |
+
```
|
154 |
+
```bibtex
|
155 |
+
@article{bolya2023window,
|
156 |
+
title={Window Attention is Bugged: How not to Interpolate Position Embeddings},
|
157 |
+
author={Bolya, Daniel and Ryali, Chaitanya and Hoffman, Judy and Feichtenhofer, Christoph},
|
158 |
+
journal={arXiv preprint arXiv:2311.05613},
|
159 |
+
year={2023}
|
160 |
+
}
|
161 |
+
```
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "hiera_small_abswin_256",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 768,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"tag": "sbb2_pd_e200_in12k_ft_in1k",
|
7 |
+
"custom_load": false,
|
8 |
+
"input_size": [
|
9 |
+
3,
|
10 |
+
256,
|
11 |
+
256
|
12 |
+
],
|
13 |
+
"fixed_input_size": true,
|
14 |
+
"interpolation": "bicubic",
|
15 |
+
"crop_pct": 0.95,
|
16 |
+
"crop_mode": "center",
|
17 |
+
"mean": [
|
18 |
+
0.485,
|
19 |
+
0.456,
|
20 |
+
0.406
|
21 |
+
],
|
22 |
+
"std": [
|
23 |
+
0.229,
|
24 |
+
0.224,
|
25 |
+
0.225
|
26 |
+
],
|
27 |
+
"num_classes": 1000,
|
28 |
+
"pool_size": null,
|
29 |
+
"first_conv": "patch_embed.proj",
|
30 |
+
"classifier": "head.fc"
|
31 |
+
}
|
32 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d82f840b21e1c89dbfba397ef4010239ddc2644ca23f7fab6df18e41420d50c
|
3 |
+
size 137468288
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00ffd5f1ac9f4380ae8f906e1dc14c6ed8cfb123bcb9b021ba59d77f53a51b1d
|
3 |
+
size 137528301
|