timm
/

Image Classification
timm
PyTorch
Safetensors

Model card for hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k

A Hiera image classification model w/ resizeable abs-win position embeddings and layer-scale. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman using "Searching for better ViT baselines" recipe. Patch dropout used during training using Hiera mask units, appeared to make pos embed more generalizable to other resolutions.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 96, 64, 64])
    #  torch.Size([1, 192, 32, 32])
    #  torch.Size([1, 384, 16, 16])
    #  torch.Size([1, 768, 8, 8])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 64, 768) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

By Top-1

model top1 top5 param_count
hiera_huge_224.mae_in1k_ft_in1k 86.834 98.01 672.78
hiera_large_224.mae_in1k_ft_in1k 86.042 97.648 213.74
hiera_base_plus_224.mae_in1k_ft_in1k 85.134 97.158 69.9
hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k 84.912 97.260 35.01
hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k 84.560 97.106 35.01
hiera_base_224.mae_in1k_ft_in1k 84.49 97.032 51.52
hiera_small_224.mae_in1k_ft_in1k 83.884 96.684 35.01
hiera_tiny_224.mae_in1k_ft_in1k 82.786 96.204 27.91

Citation

@article{ryali2023hiera,
  title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
  author={Ryali, Chaitanya and Hu, Yuan-Ting and Bolya, Daniel and Wei, Chen and Fan, Haoqi and Huang, Po-Yao and Aggarwal, Vaibhav and Chowdhury, Arkabandhu and Poursaeed, Omid and Hoffman, Judy and Malik, Jitendra and Li, Yanghao and Feichtenhofer, Christoph},
  journal={ICML},
  year={2023}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{bolya2023window,
  title={Window Attention is Bugged: How not to Interpolate Position Embeddings},
  author={Bolya, Daniel and Ryali, Chaitanya and Hoffman, Judy and Feichtenhofer, Christoph},
  journal={arXiv preprint arXiv:2311.05613},
  year={2023}
}
Downloads last month
41
Safetensors
Model size
34.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k