timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman's picture
rwightman HF staff
Fix library_name.
a691581 verified
---
license: mit
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
- imagenet-22k
---
# Model card for eva02_base_patch14_448.mim_in22k_ft_in22k_in1k
An EVA02 image classification model. Pretrained on ImageNet-22k with masked image modeling (using EVA-CLIP as a MIM teacher) and fine-tuned on ImageNet-22k then on ImageNet-1k by paper authors.
EVA-02 models are vision transformers with mean pooling, SwiGLU, Rotary Position Embeddings (ROPE), and extra LN in MLP (for Base & Large).
NOTE: `timm` checkpoints are float32 for consistency with other models. Original checkpoints are float16 or bfloat16 in some cases, see originals if that's preferred.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 87.1
- GMACs: 107.1
- Activations (M): 259.1
- Image size: 448 x 448
- **Papers:**
- EVA-02: A Visual Representation for Neon Genesis: https://arxiv.org/abs/2303.11331
- EVA-CLIP: Improved Training Techniques for CLIP at Scale: https://arxiv.org/abs/2303.15389
- **Original:**
- https://github.com/baaivision/EVA
- https://huggingface.co/Yuxin-CV/EVA-02
- **Pretrain Dataset:** ImageNet-22k
- **Dataset:** ImageNet-1k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eva02_base_patch14_448.mim_in22k_ft_in22k_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1025, 768) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|model |top1 |top5 |param_count|img_size|
|-----------------------------------------------|------|------|-----------|--------|
|eva02_large_patch14_448.mim_m38m_ft_in22k_in1k |90.054|99.042|305.08 |448 |
|eva02_large_patch14_448.mim_in22k_ft_in22k_in1k|89.946|99.01 |305.08 |448 |
|eva_giant_patch14_560.m30m_ft_in22k_in1k |89.792|98.992|1014.45 |560 |
|eva02_large_patch14_448.mim_in22k_ft_in1k |89.626|98.954|305.08 |448 |
|eva02_large_patch14_448.mim_m38m_ft_in1k |89.57 |98.918|305.08 |448 |
|eva_giant_patch14_336.m30m_ft_in22k_in1k |89.56 |98.956|1013.01 |336 |
|eva_giant_patch14_336.clip_ft_in1k |89.466|98.82 |1013.01 |336 |
|eva_large_patch14_336.in22k_ft_in22k_in1k |89.214|98.854|304.53 |336 |
|eva_giant_patch14_224.clip_ft_in1k |88.882|98.678|1012.56 |224 |
|eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |88.692|98.722|87.12 |448 |
|eva_large_patch14_336.in22k_ft_in1k |88.652|98.722|304.53 |336 |
|eva_large_patch14_196.in22k_ft_in22k_in1k |88.592|98.656|304.14 |196 |
|eva02_base_patch14_448.mim_in22k_ft_in1k |88.23 |98.564|87.12 |448 |
|eva_large_patch14_196.in22k_ft_in1k |87.934|98.504|304.14 |196 |
|eva02_small_patch14_336.mim_in22k_ft_in1k |85.74 |97.614|22.13 |336 |
|eva02_tiny_patch14_336.mim_in22k_ft_in1k |80.658|95.524|5.76 |336 |
## Citation
```bibtex
@article{EVA02,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.11331},
year={2023}
}
```
```bibtex
@article{EVA-CLIP,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Sun, Quan and Fang, Yuxin and Wu, Ledell and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.15389},
year={2023}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```