ALL_862873 / README.md
thtang's picture
Update README.md
ee45003
metadata
tags:
  - mteb
model-index:
  - name: ALL_862873
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 50.805970149253746
          - type: ap
            value: 21.350961103104364
          - type: f1
            value: 46.546166439875044
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 52.567125000000004
          - type: ap
            value: 51.37893936391345
          - type: f1
            value: 51.8411977908125
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 22.63
          - type: f1
            value: 21.964526516204575
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.991
          - type: map_at_10
            value: 4.095
          - type: map_at_100
            value: 4.763
          - type: map_at_1000
            value: 4.8759999999999994
          - type: map_at_3
            value: 3.3070000000000004
          - type: map_at_5
            value: 3.73
          - type: mrr_at_1
            value: 2.0629999999999997
          - type: mrr_at_10
            value: 4.119
          - type: mrr_at_100
            value: 4.787
          - type: mrr_at_1000
            value: 4.9
          - type: mrr_at_3
            value: 3.331
          - type: mrr_at_5
            value: 3.768
          - type: ndcg_at_1
            value: 1.991
          - type: ndcg_at_10
            value: 5.346
          - type: ndcg_at_100
            value: 9.181000000000001
          - type: ndcg_at_1000
            value: 13.004
          - type: ndcg_at_3
            value: 3.7199999999999998
          - type: ndcg_at_5
            value: 4.482
          - type: precision_at_1
            value: 1.991
          - type: precision_at_10
            value: 0.9390000000000001
          - type: precision_at_100
            value: 0.28700000000000003
          - type: precision_at_1000
            value: 0.061
          - type: precision_at_3
            value: 1.636
          - type: precision_at_5
            value: 1.351
          - type: recall_at_1
            value: 1.991
          - type: recall_at_10
            value: 9.388
          - type: recall_at_100
            value: 28.663
          - type: recall_at_1000
            value: 60.597
          - type: recall_at_3
            value: 4.9079999999999995
          - type: recall_at_5
            value: 6.757000000000001
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 14.790995349964428
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 12.248406292959412
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 44.88116875696166
          - type: mrr
            value: 56.07439651760981
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 19.26573437410263
          - type: cos_sim_spearman
            value: 21.34145013484056
          - type: euclidean_pearson
            value: 22.39226418475093
          - type: euclidean_spearman
            value: 23.511981519581447
          - type: manhattan_pearson
            value: 22.14346931904813
          - type: manhattan_spearman
            value: 23.39390654000631
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 36.42857142857143
          - type: f1
            value: 34.81640976406094
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 13.94296328377691
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 9.790764523161606
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.968
          - type: map_at_10
            value: 2.106
          - type: map_at_100
            value: 2.411
          - type: map_at_1000
            value: 2.4899999999999998
          - type: map_at_3
            value: 1.797
          - type: map_at_5
            value: 1.9959999999999998
          - type: mrr_at_1
            value: 1.717
          - type: mrr_at_10
            value: 3.0349999999999997
          - type: mrr_at_100
            value: 3.4029999999999996
          - type: mrr_at_1000
            value: 3.486
          - type: mrr_at_3
            value: 2.6470000000000002
          - type: mrr_at_5
            value: 2.876
          - type: ndcg_at_1
            value: 1.717
          - type: ndcg_at_10
            value: 2.9059999999999997
          - type: ndcg_at_100
            value: 4.715
          - type: ndcg_at_1000
            value: 7.318
          - type: ndcg_at_3
            value: 2.415
          - type: ndcg_at_5
            value: 2.682
          - type: precision_at_1
            value: 1.717
          - type: precision_at_10
            value: 0.658
          - type: precision_at_100
            value: 0.197
          - type: precision_at_1000
            value: 0.054
          - type: precision_at_3
            value: 1.431
          - type: precision_at_5
            value: 1.059
          - type: recall_at_1
            value: 0.968
          - type: recall_at_10
            value: 4.531000000000001
          - type: recall_at_100
            value: 13.081000000000001
          - type: recall_at_1000
            value: 32.443
          - type: recall_at_3
            value: 2.8850000000000002
          - type: recall_at_5
            value: 3.768
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.9390000000000001
          - type: map_at_10
            value: 1.516
          - type: map_at_100
            value: 1.6680000000000001
          - type: map_at_1000
            value: 1.701
          - type: map_at_3
            value: 1.314
          - type: map_at_5
            value: 1.388
          - type: mrr_at_1
            value: 1.146
          - type: mrr_at_10
            value: 1.96
          - type: mrr_at_100
            value: 2.166
          - type: mrr_at_1000
            value: 2.207
          - type: mrr_at_3
            value: 1.72
          - type: mrr_at_5
            value: 1.796
          - type: ndcg_at_1
            value: 1.146
          - type: ndcg_at_10
            value: 1.9769999999999999
          - type: ndcg_at_100
            value: 2.8400000000000003
          - type: ndcg_at_1000
            value: 4.035
          - type: ndcg_at_3
            value: 1.5859999999999999
          - type: ndcg_at_5
            value: 1.6709999999999998
          - type: precision_at_1
            value: 1.146
          - type: precision_at_10
            value: 0.43299999999999994
          - type: precision_at_100
            value: 0.11100000000000002
          - type: precision_at_1000
            value: 0.027999999999999997
          - type: precision_at_3
            value: 0.8699999999999999
          - type: precision_at_5
            value: 0.611
          - type: recall_at_1
            value: 0.9390000000000001
          - type: recall_at_10
            value: 2.949
          - type: recall_at_100
            value: 6.737
          - type: recall_at_1000
            value: 15.604999999999999
          - type: recall_at_3
            value: 1.846
          - type: recall_at_5
            value: 2.08
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.28
          - type: map_at_10
            value: 2.157
          - type: map_at_100
            value: 2.401
          - type: map_at_1000
            value: 2.4570000000000003
          - type: map_at_3
            value: 1.865
          - type: map_at_5
            value: 1.928
          - type: mrr_at_1
            value: 1.505
          - type: mrr_at_10
            value: 2.52
          - type: mrr_at_100
            value: 2.782
          - type: mrr_at_1000
            value: 2.8400000000000003
          - type: mrr_at_3
            value: 2.1839999999999997
          - type: mrr_at_5
            value: 2.2689999999999997
          - type: ndcg_at_1
            value: 1.505
          - type: ndcg_at_10
            value: 2.798
          - type: ndcg_at_100
            value: 4.2090000000000005
          - type: ndcg_at_1000
            value: 6.105
          - type: ndcg_at_3
            value: 2.157
          - type: ndcg_at_5
            value: 2.258
          - type: precision_at_1
            value: 1.505
          - type: precision_at_10
            value: 0.5519999999999999
          - type: precision_at_100
            value: 0.146
          - type: precision_at_1000
            value: 0.034999999999999996
          - type: precision_at_3
            value: 1.024
          - type: precision_at_5
            value: 0.7020000000000001
          - type: recall_at_1
            value: 1.28
          - type: recall_at_10
            value: 4.455
          - type: recall_at_100
            value: 11.169
          - type: recall_at_1000
            value: 26.046000000000003
          - type: recall_at_3
            value: 2.6270000000000002
          - type: recall_at_5
            value: 2.899
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.264
          - type: map_at_10
            value: 0.615
          - type: map_at_100
            value: 0.76
          - type: map_at_1000
            value: 0.803
          - type: map_at_3
            value: 0.40499999999999997
          - type: map_at_5
            value: 0.512
          - type: mrr_at_1
            value: 0.33899999999999997
          - type: mrr_at_10
            value: 0.718
          - type: mrr_at_100
            value: 0.8880000000000001
          - type: mrr_at_1000
            value: 0.935
          - type: mrr_at_3
            value: 0.508
          - type: mrr_at_5
            value: 0.616
          - type: ndcg_at_1
            value: 0.33899999999999997
          - type: ndcg_at_10
            value: 0.9079999999999999
          - type: ndcg_at_100
            value: 1.9029999999999998
          - type: ndcg_at_1000
            value: 3.4939999999999998
          - type: ndcg_at_3
            value: 0.46499999999999997
          - type: ndcg_at_5
            value: 0.655
          - type: precision_at_1
            value: 0.33899999999999997
          - type: precision_at_10
            value: 0.192
          - type: precision_at_100
            value: 0.079
          - type: precision_at_1000
            value: 0.023
          - type: precision_at_3
            value: 0.22599999999999998
          - type: precision_at_5
            value: 0.22599999999999998
          - type: recall_at_1
            value: 0.264
          - type: recall_at_10
            value: 1.789
          - type: recall_at_100
            value: 6.927
          - type: recall_at_1000
            value: 19.922
          - type: recall_at_3
            value: 0.5459999999999999
          - type: recall_at_5
            value: 0.9979999999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.5599999999999999
          - type: map_at_10
            value: 0.9129999999999999
          - type: map_at_100
            value: 1.027
          - type: map_at_1000
            value: 1.072
          - type: map_at_3
            value: 0.715
          - type: map_at_5
            value: 0.826
          - type: mrr_at_1
            value: 0.8710000000000001
          - type: mrr_at_10
            value: 1.331
          - type: mrr_at_100
            value: 1.494
          - type: mrr_at_1000
            value: 1.547
          - type: mrr_at_3
            value: 1.119
          - type: mrr_at_5
            value: 1.269
          - type: ndcg_at_1
            value: 0.8710000000000001
          - type: ndcg_at_10
            value: 1.2590000000000001
          - type: ndcg_at_100
            value: 2.023
          - type: ndcg_at_1000
            value: 3.737
          - type: ndcg_at_3
            value: 0.8750000000000001
          - type: ndcg_at_5
            value: 1.079
          - type: precision_at_1
            value: 0.8710000000000001
          - type: precision_at_10
            value: 0.28600000000000003
          - type: precision_at_100
            value: 0.086
          - type: precision_at_1000
            value: 0.027999999999999997
          - type: precision_at_3
            value: 0.498
          - type: precision_at_5
            value: 0.42300000000000004
          - type: recall_at_1
            value: 0.5599999999999999
          - type: recall_at_10
            value: 1.907
          - type: recall_at_100
            value: 5.492
          - type: recall_at_1000
            value: 18.974
          - type: recall_at_3
            value: 0.943
          - type: recall_at_5
            value: 1.41
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.9720000000000002
          - type: map_at_10
            value: 2.968
          - type: map_at_100
            value: 3.2009999999999996
          - type: map_at_1000
            value: 3.2680000000000002
          - type: map_at_3
            value: 2.683
          - type: map_at_5
            value: 2.8369999999999997
          - type: mrr_at_1
            value: 2.406
          - type: mrr_at_10
            value: 3.567
          - type: mrr_at_100
            value: 3.884
          - type: mrr_at_1000
            value: 3.948
          - type: mrr_at_3
            value: 3.2239999999999998
          - type: mrr_at_5
            value: 3.383
          - type: ndcg_at_1
            value: 2.406
          - type: ndcg_at_10
            value: 3.63
          - type: ndcg_at_100
            value: 5.155
          - type: ndcg_at_1000
            value: 7.381
          - type: ndcg_at_3
            value: 3.078
          - type: ndcg_at_5
            value: 3.3070000000000004
          - type: precision_at_1
            value: 2.406
          - type: precision_at_10
            value: 0.635
          - type: precision_at_100
            value: 0.184
          - type: precision_at_1000
            value: 0.048
          - type: precision_at_3
            value: 1.4120000000000001
          - type: precision_at_5
            value: 1.001
          - type: recall_at_1
            value: 1.9720000000000002
          - type: recall_at_10
            value: 5.152
          - type: recall_at_100
            value: 12.173
          - type: recall_at_1000
            value: 28.811999999999998
          - type: recall_at_3
            value: 3.556
          - type: recall_at_5
            value: 4.181
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.346
          - type: map_at_10
            value: 0.619
          - type: map_at_100
            value: 0.743
          - type: map_at_1000
            value: 0.788
          - type: map_at_3
            value: 0.5369999999999999
          - type: map_at_5
            value: 0.551
          - type: mrr_at_1
            value: 0.571
          - type: mrr_at_10
            value: 1.0619999999999998
          - type: mrr_at_100
            value: 1.2109999999999999
          - type: mrr_at_1000
            value: 1.265
          - type: mrr_at_3
            value: 0.818
          - type: mrr_at_5
            value: 0.927
          - type: ndcg_at_1
            value: 0.571
          - type: ndcg_at_10
            value: 0.919
          - type: ndcg_at_100
            value: 1.688
          - type: ndcg_at_1000
            value: 3.3649999999999998
          - type: ndcg_at_3
            value: 0.6779999999999999
          - type: ndcg_at_5
            value: 0.7230000000000001
          - type: precision_at_1
            value: 0.571
          - type: precision_at_10
            value: 0.27399999999999997
          - type: precision_at_100
            value: 0.084
          - type: precision_at_1000
            value: 0.029
          - type: precision_at_3
            value: 0.381
          - type: precision_at_5
            value: 0.32
          - type: recall_at_1
            value: 0.346
          - type: recall_at_10
            value: 1.397
          - type: recall_at_100
            value: 5.079000000000001
          - type: recall_at_1000
            value: 18.060000000000002
          - type: recall_at_3
            value: 0.774
          - type: recall_at_5
            value: 0.8340000000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.69
          - type: map_at_10
            value: 0.897
          - type: map_at_100
            value: 1.0030000000000001
          - type: map_at_1000
            value: 1.034
          - type: map_at_3
            value: 0.818
          - type: map_at_5
            value: 0.864
          - type: mrr_at_1
            value: 0.767
          - type: mrr_at_10
            value: 1.008
          - type: mrr_at_100
            value: 1.145
          - type: mrr_at_1000
            value: 1.183
          - type: mrr_at_3
            value: 0.895
          - type: mrr_at_5
            value: 0.9560000000000001
          - type: ndcg_at_1
            value: 0.767
          - type: ndcg_at_10
            value: 1.0739999999999998
          - type: ndcg_at_100
            value: 1.757
          - type: ndcg_at_1000
            value: 2.9090000000000003
          - type: ndcg_at_3
            value: 0.881
          - type: ndcg_at_5
            value: 0.9769999999999999
          - type: precision_at_1
            value: 0.767
          - type: precision_at_10
            value: 0.184
          - type: precision_at_100
            value: 0.06
          - type: precision_at_1000
            value: 0.018000000000000002
          - type: precision_at_3
            value: 0.358
          - type: precision_at_5
            value: 0.27599999999999997
          - type: recall_at_1
            value: 0.69
          - type: recall_at_10
            value: 1.508
          - type: recall_at_100
            value: 4.858
          - type: recall_at_1000
            value: 14.007
          - type: recall_at_3
            value: 0.997
          - type: recall_at_5
            value: 1.2269999999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.338
          - type: map_at_10
            value: 0.661
          - type: map_at_100
            value: 0.7969999999999999
          - type: map_at_1000
            value: 0.8290000000000001
          - type: map_at_3
            value: 0.5559999999999999
          - type: map_at_5
            value: 0.5910000000000001
          - type: mrr_at_1
            value: 0.482
          - type: mrr_at_10
            value: 0.88
          - type: mrr_at_100
            value: 1.036
          - type: mrr_at_1000
            value: 1.075
          - type: mrr_at_3
            value: 0.74
          - type: mrr_at_5
            value: 0.779
          - type: ndcg_at_1
            value: 0.482
          - type: ndcg_at_10
            value: 0.924
          - type: ndcg_at_100
            value: 1.736
          - type: ndcg_at_1000
            value: 2.926
          - type: ndcg_at_3
            value: 0.677
          - type: ndcg_at_5
            value: 0.732
          - type: precision_at_1
            value: 0.482
          - type: precision_at_10
            value: 0.20600000000000002
          - type: precision_at_100
            value: 0.078
          - type: precision_at_1000
            value: 0.023
          - type: precision_at_3
            value: 0.367
          - type: precision_at_5
            value: 0.255
          - type: recall_at_1
            value: 0.338
          - type: recall_at_10
            value: 1.545
          - type: recall_at_100
            value: 5.38
          - type: recall_at_1000
            value: 14.609
          - type: recall_at_3
            value: 0.826
          - type: recall_at_5
            value: 0.975
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.8240000000000001
          - type: map_at_10
            value: 1.254
          - type: map_at_100
            value: 1.389
          - type: map_at_1000
            value: 1.419
          - type: map_at_3
            value: 1.158
          - type: map_at_5
            value: 1.189
          - type: mrr_at_1
            value: 0.9329999999999999
          - type: mrr_at_10
            value: 1.4200000000000002
          - type: mrr_at_100
            value: 1.59
          - type: mrr_at_1000
            value: 1.629
          - type: mrr_at_3
            value: 1.29
          - type: mrr_at_5
            value: 1.332
          - type: ndcg_at_1
            value: 0.9329999999999999
          - type: ndcg_at_10
            value: 1.53
          - type: ndcg_at_100
            value: 2.418
          - type: ndcg_at_1000
            value: 3.7310000000000003
          - type: ndcg_at_3
            value: 1.302
          - type: ndcg_at_5
            value: 1.363
          - type: precision_at_1
            value: 0.9329999999999999
          - type: precision_at_10
            value: 0.271
          - type: precision_at_100
            value: 0.083
          - type: precision_at_1000
            value: 0.024
          - type: precision_at_3
            value: 0.622
          - type: precision_at_5
            value: 0.41000000000000003
          - type: recall_at_1
            value: 0.8240000000000001
          - type: recall_at_10
            value: 2.1999999999999997
          - type: recall_at_100
            value: 6.584
          - type: recall_at_1000
            value: 17.068
          - type: recall_at_3
            value: 1.5859999999999999
          - type: recall_at_5
            value: 1.7260000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.404
          - type: map_at_10
            value: 0.788
          - type: map_at_100
            value: 0.9860000000000001
          - type: map_at_1000
            value: 1.04
          - type: map_at_3
            value: 0.676
          - type: map_at_5
            value: 0.733
          - type: mrr_at_1
            value: 0.5930000000000001
          - type: mrr_at_10
            value: 1.278
          - type: mrr_at_100
            value: 1.545
          - type: mrr_at_1000
            value: 1.599
          - type: mrr_at_3
            value: 1.054
          - type: mrr_at_5
            value: 1.192
          - type: ndcg_at_1
            value: 0.5930000000000001
          - type: ndcg_at_10
            value: 1.1280000000000001
          - type: ndcg_at_100
            value: 2.2689999999999997
          - type: ndcg_at_1000
            value: 4.274
          - type: ndcg_at_3
            value: 0.919
          - type: ndcg_at_5
            value: 1.038
          - type: precision_at_1
            value: 0.5930000000000001
          - type: precision_at_10
            value: 0.296
          - type: precision_at_100
            value: 0.152
          - type: precision_at_1000
            value: 0.05
          - type: precision_at_3
            value: 0.527
          - type: precision_at_5
            value: 0.47400000000000003
          - type: recall_at_1
            value: 0.404
          - type: recall_at_10
            value: 1.601
          - type: recall_at_100
            value: 6.885
          - type: recall_at_1000
            value: 22.356
          - type: recall_at_3
            value: 0.9490000000000001
          - type: recall_at_5
            value: 1.206
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.185
          - type: map_at_10
            value: 0.192
          - type: map_at_100
            value: 0.271
          - type: map_at_1000
            value: 0.307
          - type: map_at_3
            value: 0.185
          - type: map_at_5
            value: 0.185
          - type: mrr_at_1
            value: 0.185
          - type: mrr_at_10
            value: 0.20500000000000002
          - type: mrr_at_100
            value: 0.292
          - type: mrr_at_1000
            value: 0.331
          - type: mrr_at_3
            value: 0.185
          - type: mrr_at_5
            value: 0.185
          - type: ndcg_at_1
            value: 0.185
          - type: ndcg_at_10
            value: 0.211
          - type: ndcg_at_100
            value: 0.757
          - type: ndcg_at_1000
            value: 1.928
          - type: ndcg_at_3
            value: 0.185
          - type: ndcg_at_5
            value: 0.185
          - type: precision_at_1
            value: 0.185
          - type: precision_at_10
            value: 0.037
          - type: precision_at_100
            value: 0.039
          - type: precision_at_1000
            value: 0.015
          - type: precision_at_3
            value: 0.062
          - type: precision_at_5
            value: 0.037
          - type: recall_at_1
            value: 0.185
          - type: recall_at_10
            value: 0.246
          - type: recall_at_100
            value: 3.05
          - type: recall_at_1000
            value: 12.5
          - type: recall_at_3
            value: 0.185
          - type: recall_at_5
            value: 0.185
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.241
          - type: map_at_10
            value: 0.372
          - type: map_at_100
            value: 0.45999999999999996
          - type: map_at_1000
            value: 0.47600000000000003
          - type: map_at_3
            value: 0.33999999999999997
          - type: map_at_5
            value: 0.359
          - type: mrr_at_1
            value: 0.651
          - type: mrr_at_10
            value: 1.03
          - type: mrr_at_100
            value: 1.2489999999999999
          - type: mrr_at_1000
            value: 1.282
          - type: mrr_at_3
            value: 0.9450000000000001
          - type: mrr_at_5
            value: 1.0030000000000001
          - type: ndcg_at_1
            value: 0.651
          - type: ndcg_at_10
            value: 0.588
          - type: ndcg_at_100
            value: 1.2550000000000001
          - type: ndcg_at_1000
            value: 1.9040000000000001
          - type: ndcg_at_3
            value: 0.547
          - type: ndcg_at_5
            value: 0.549
          - type: precision_at_1
            value: 0.651
          - type: precision_at_10
            value: 0.182
          - type: precision_at_100
            value: 0.086
          - type: precision_at_1000
            value: 0.02
          - type: precision_at_3
            value: 0.434
          - type: precision_at_5
            value: 0.313
          - type: recall_at_1
            value: 0.241
          - type: recall_at_10
            value: 0.63
          - type: recall_at_100
            value: 3.1759999999999997
          - type: recall_at_1000
            value: 7.175
          - type: recall_at_3
            value: 0.46299999999999997
          - type: recall_at_5
            value: 0.543
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.04
          - type: map_at_10
            value: 0.089
          - type: map_at_100
            value: 0.133
          - type: map_at_1000
            value: 0.165
          - type: map_at_3
            value: 0.054
          - type: map_at_5
            value: 0.056999999999999995
          - type: mrr_at_1
            value: 0.75
          - type: mrr_at_10
            value: 1.4749999999999999
          - type: mrr_at_100
            value: 1.8010000000000002
          - type: mrr_at_1000
            value: 1.847
          - type: mrr_at_3
            value: 1.208
          - type: mrr_at_5
            value: 1.333
          - type: ndcg_at_1
            value: 0.625
          - type: ndcg_at_10
            value: 0.428
          - type: ndcg_at_100
            value: 0.705
          - type: ndcg_at_1000
            value: 1.564
          - type: ndcg_at_3
            value: 0.5369999999999999
          - type: ndcg_at_5
            value: 0.468
          - type: precision_at_1
            value: 0.75
          - type: precision_at_10
            value: 0.375
          - type: precision_at_100
            value: 0.27499999999999997
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 0.583
          - type: precision_at_5
            value: 0.5
          - type: recall_at_1
            value: 0.04
          - type: recall_at_10
            value: 0.385
          - type: recall_at_100
            value: 1.2670000000000001
          - type: recall_at_1000
            value: 4.522
          - type: recall_at_3
            value: 0.07100000000000001
          - type: recall_at_5
            value: 0.08099999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 22.749999999999996
          - type: f1
            value: 19.335020165482693
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.257
          - type: map_at_10
            value: 0.416
          - type: map_at_100
            value: 0.451
          - type: map_at_1000
            value: 0.46499999999999997
          - type: map_at_3
            value: 0.37
          - type: map_at_5
            value: 0.386
          - type: mrr_at_1
            value: 0.27
          - type: mrr_at_10
            value: 0.44200000000000006
          - type: mrr_at_100
            value: 0.48
          - type: mrr_at_1000
            value: 0.49500000000000005
          - type: mrr_at_3
            value: 0.38999999999999996
          - type: mrr_at_5
            value: 0.411
          - type: ndcg_at_1
            value: 0.27
          - type: ndcg_at_10
            value: 0.51
          - type: ndcg_at_100
            value: 0.738
          - type: ndcg_at_1000
            value: 1.2630000000000001
          - type: ndcg_at_3
            value: 0.41000000000000003
          - type: ndcg_at_5
            value: 0.439
          - type: precision_at_1
            value: 0.27
          - type: precision_at_10
            value: 0.084
          - type: precision_at_100
            value: 0.021
          - type: precision_at_1000
            value: 0.006999999999999999
          - type: precision_at_3
            value: 0.17500000000000002
          - type: precision_at_5
            value: 0.123
          - type: recall_at_1
            value: 0.257
          - type: recall_at_10
            value: 0.786
          - type: recall_at_100
            value: 1.959
          - type: recall_at_1000
            value: 6.334
          - type: recall_at_3
            value: 0.49699999999999994
          - type: recall_at_5
            value: 0.5680000000000001
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.28900000000000003
          - type: map_at_10
            value: 0.475
          - type: map_at_100
            value: 0.559
          - type: map_at_1000
            value: 0.5930000000000001
          - type: map_at_3
            value: 0.38999999999999996
          - type: map_at_5
            value: 0.41700000000000004
          - type: mrr_at_1
            value: 0.772
          - type: mrr_at_10
            value: 1.107
          - type: mrr_at_100
            value: 1.269
          - type: mrr_at_1000
            value: 1.323
          - type: mrr_at_3
            value: 0.9520000000000001
          - type: mrr_at_5
            value: 1.0290000000000001
          - type: ndcg_at_1
            value: 0.772
          - type: ndcg_at_10
            value: 0.755
          - type: ndcg_at_100
            value: 1.256
          - type: ndcg_at_1000
            value: 2.55
          - type: ndcg_at_3
            value: 0.633
          - type: ndcg_at_5
            value: 0.639
          - type: precision_at_1
            value: 0.772
          - type: precision_at_10
            value: 0.262
          - type: precision_at_100
            value: 0.082
          - type: precision_at_1000
            value: 0.03
          - type: precision_at_3
            value: 0.46299999999999997
          - type: precision_at_5
            value: 0.33999999999999997
          - type: recall_at_1
            value: 0.28900000000000003
          - type: recall_at_10
            value: 0.976
          - type: recall_at_100
            value: 2.802
          - type: recall_at_1000
            value: 11.466
          - type: recall_at_3
            value: 0.54
          - type: recall_at_5
            value: 0.6479999999999999
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.257
          - type: map_at_10
            value: 0.395
          - type: map_at_100
            value: 0.436
          - type: map_at_1000
            value: 0.447
          - type: map_at_3
            value: 0.347
          - type: map_at_5
            value: 0.369
          - type: mrr_at_1
            value: 0.513
          - type: mrr_at_10
            value: 0.787
          - type: mrr_at_100
            value: 0.865
          - type: mrr_at_1000
            value: 0.8840000000000001
          - type: mrr_at_3
            value: 0.6930000000000001
          - type: mrr_at_5
            value: 0.738
          - type: ndcg_at_1
            value: 0.513
          - type: ndcg_at_10
            value: 0.587
          - type: ndcg_at_100
            value: 0.881
          - type: ndcg_at_1000
            value: 1.336
          - type: ndcg_at_3
            value: 0.46299999999999997
          - type: ndcg_at_5
            value: 0.511
          - type: precision_at_1
            value: 0.513
          - type: precision_at_10
            value: 0.151
          - type: precision_at_100
            value: 0.04
          - type: precision_at_1000
            value: 0.01
          - type: precision_at_3
            value: 0.311
          - type: precision_at_5
            value: 0.22399999999999998
          - type: recall_at_1
            value: 0.257
          - type: recall_at_10
            value: 0.756
          - type: recall_at_100
            value: 1.9849999999999999
          - type: recall_at_1000
            value: 5.111000000000001
          - type: recall_at_3
            value: 0.466
          - type: recall_at_5
            value: 0.5599999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 50.76400000000001
          - type: ap
            value: 50.41569411130455
          - type: f1
            value: 50.14266303576945
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 0.14300000000000002
          - type: map_at_10
            value: 0.23700000000000002
          - type: map_at_100
            value: 0.27799999999999997
          - type: map_at_1000
            value: 0.291
          - type: map_at_3
            value: 0.197
          - type: map_at_5
            value: 0.215
          - type: mrr_at_1
            value: 0.14300000000000002
          - type: mrr_at_10
            value: 0.247
          - type: mrr_at_100
            value: 0.29
          - type: mrr_at_1000
            value: 0.303
          - type: mrr_at_3
            value: 0.201
          - type: mrr_at_5
            value: 0.219
          - type: ndcg_at_1
            value: 0.14300000000000002
          - type: ndcg_at_10
            value: 0.307
          - type: ndcg_at_100
            value: 0.5720000000000001
          - type: ndcg_at_1000
            value: 1.053
          - type: ndcg_at_3
            value: 0.215
          - type: ndcg_at_5
            value: 0.248
          - type: precision_at_1
            value: 0.14300000000000002
          - type: precision_at_10
            value: 0.056999999999999995
          - type: precision_at_100
            value: 0.02
          - type: precision_at_1000
            value: 0.006
          - type: precision_at_3
            value: 0.091
          - type: precision_at_5
            value: 0.07200000000000001
          - type: recall_at_1
            value: 0.14300000000000002
          - type: recall_at_10
            value: 0.522
          - type: recall_at_100
            value: 1.9009999999999998
          - type: recall_at_1000
            value: 5.893000000000001
          - type: recall_at_3
            value: 0.263
          - type: recall_at_5
            value: 0.34099999999999997
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 61.03283173734611
          - type: f1
            value: 61.24012492746259
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 29.68308253533972
          - type: f1
            value: 16.243459114946905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 34.330867518493605
          - type: f1
            value: 33.176158044175935
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.13248150638871
          - type: f1
            value: 44.24904249078732
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 15.698400177259078
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 14.888797785310235
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 25.652445385382126
          - type: mrr
            value: 25.891573325600227
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.322
          - type: map_at_10
            value: 0.7230000000000001
          - type: map_at_100
            value: 1.248
          - type: map_at_1000
            value: 1.873
          - type: map_at_3
            value: 0.479
          - type: map_at_5
            value: 0.5700000000000001
          - type: mrr_at_1
            value: 6.502
          - type: mrr_at_10
            value: 10.735
          - type: mrr_at_100
            value: 11.848
          - type: mrr_at_1000
            value: 11.995000000000001
          - type: mrr_at_3
            value: 9.391
          - type: mrr_at_5
            value: 9.732000000000001
          - type: ndcg_at_1
            value: 6.037
          - type: ndcg_at_10
            value: 4.873
          - type: ndcg_at_100
            value: 5.959
          - type: ndcg_at_1000
            value: 14.424000000000001
          - type: ndcg_at_3
            value: 5.4559999999999995
          - type: ndcg_at_5
            value: 5.074
          - type: precision_at_1
            value: 6.192
          - type: precision_at_10
            value: 4.458
          - type: precision_at_100
            value: 2.5700000000000003
          - type: precision_at_1000
            value: 1.3679999999999999
          - type: precision_at_3
            value: 5.676
          - type: precision_at_5
            value: 4.954
          - type: recall_at_1
            value: 0.322
          - type: recall_at_10
            value: 1.545
          - type: recall_at_100
            value: 8.301
          - type: recall_at_1000
            value: 37.294
          - type: recall_at_3
            value: 0.623
          - type: recall_at_5
            value: 0.865
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.188
          - type: map_at_10
            value: 0.27
          - type: map_at_100
            value: 0.322
          - type: map_at_1000
            value: 0.335
          - type: map_at_3
            value: 0.246
          - type: map_at_5
            value: 0.246
          - type: mrr_at_1
            value: 0.203
          - type: mrr_at_10
            value: 0.28300000000000003
          - type: mrr_at_100
            value: 0.344
          - type: mrr_at_1000
            value: 0.357
          - type: mrr_at_3
            value: 0.261
          - type: mrr_at_5
            value: 0.261
          - type: ndcg_at_1
            value: 0.203
          - type: ndcg_at_10
            value: 0.329
          - type: ndcg_at_100
            value: 0.628
          - type: ndcg_at_1000
            value: 1.0959999999999999
          - type: ndcg_at_3
            value: 0.272
          - type: ndcg_at_5
            value: 0.272
          - type: precision_at_1
            value: 0.203
          - type: precision_at_10
            value: 0.055
          - type: precision_at_100
            value: 0.024
          - type: precision_at_1000
            value: 0.006999999999999999
          - type: precision_at_3
            value: 0.116
          - type: precision_at_5
            value: 0.06999999999999999
          - type: recall_at_1
            value: 0.188
          - type: recall_at_10
            value: 0.507
          - type: recall_at_100
            value: 1.883
          - type: recall_at_1000
            value: 5.609999999999999
          - type: recall_at_3
            value: 0.333
          - type: recall_at_5
            value: 0.333
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.016000000000002
          - type: map_at_10
            value: 28.977999999999998
          - type: map_at_100
            value: 29.579
          - type: map_at_1000
            value: 29.648999999999997
          - type: map_at_3
            value: 27.673
          - type: map_at_5
            value: 28.427000000000003
          - type: mrr_at_1
            value: 27.93
          - type: mrr_at_10
            value: 32.462999999999994
          - type: mrr_at_100
            value: 32.993
          - type: mrr_at_1000
            value: 33.044000000000004
          - type: mrr_at_3
            value: 31.252000000000002
          - type: mrr_at_5
            value: 31.968999999999998
          - type: ndcg_at_1
            value: 27.96
          - type: ndcg_at_10
            value: 31.954
          - type: ndcg_at_100
            value: 34.882000000000005
          - type: ndcg_at_1000
            value: 36.751
          - type: ndcg_at_3
            value: 29.767
          - type: ndcg_at_5
            value: 30.816
          - type: precision_at_1
            value: 27.96
          - type: precision_at_10
            value: 4.826
          - type: precision_at_100
            value: 0.697
          - type: precision_at_1000
            value: 0.093
          - type: precision_at_3
            value: 12.837000000000002
          - type: precision_at_5
            value: 8.559999999999999
          - type: recall_at_1
            value: 24.016000000000002
          - type: recall_at_10
            value: 37.574999999999996
          - type: recall_at_100
            value: 50.843
          - type: recall_at_1000
            value: 64.654
          - type: recall_at_3
            value: 31.182
          - type: recall_at_5
            value: 34.055
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 18.38048892083281
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 27.103011764141478
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.18
          - type: map_at_10
            value: 0.457
          - type: map_at_100
            value: 0.634
          - type: map_at_1000
            value: 0.7000000000000001
          - type: map_at_3
            value: 0.333
          - type: map_at_5
            value: 0.387
          - type: mrr_at_1
            value: 0.8999999999999999
          - type: mrr_at_10
            value: 1.967
          - type: mrr_at_100
            value: 2.396
          - type: mrr_at_1000
            value: 2.495
          - type: mrr_at_3
            value: 1.567
          - type: mrr_at_5
            value: 1.7670000000000001
          - type: ndcg_at_1
            value: 0.8999999999999999
          - type: ndcg_at_10
            value: 1.022
          - type: ndcg_at_100
            value: 2.366
          - type: ndcg_at_1000
            value: 4.689
          - type: ndcg_at_3
            value: 0.882
          - type: ndcg_at_5
            value: 0.7929999999999999
          - type: precision_at_1
            value: 0.8999999999999999
          - type: precision_at_10
            value: 0.58
          - type: precision_at_100
            value: 0.263
          - type: precision_at_1000
            value: 0.084
          - type: precision_at_3
            value: 0.8999999999999999
          - type: precision_at_5
            value: 0.74
          - type: recall_at_1
            value: 0.18
          - type: recall_at_10
            value: 1.208
          - type: recall_at_100
            value: 5.373
          - type: recall_at_1000
            value: 17.112
          - type: recall_at_3
            value: 0.5579999999999999
          - type: recall_at_5
            value: 0.7779999999999999
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 55.229896309578905
          - type: cos_sim_spearman
            value: 48.54616726085393
          - type: euclidean_pearson
            value: 53.828130644322
          - type: euclidean_spearman
            value: 48.2907441223958
          - type: manhattan_pearson
            value: 53.72684612327582
          - type: manhattan_spearman
            value: 48.228319721712744
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 57.73555535277214
          - type: cos_sim_spearman
            value: 55.58790083939622
          - type: euclidean_pearson
            value: 61.009463373795384
          - type: euclidean_spearman
            value: 56.696846101196044
          - type: manhattan_pearson
            value: 60.875111392597894
          - type: manhattan_spearman
            value: 56.63100766160946
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 19.47269635955134
          - type: cos_sim_spearman
            value: 18.35951746300603
          - type: euclidean_pearson
            value: 23.130707248318714
          - type: euclidean_spearman
            value: 22.92241668287248
          - type: manhattan_pearson
            value: 22.99371642148021
          - type: manhattan_spearman
            value: 22.770233678121897
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 31.78346805351368
          - type: cos_sim_spearman
            value: 28.84281669682782
          - type: euclidean_pearson
            value: 34.508176962091156
          - type: euclidean_spearman
            value: 32.269242265609975
          - type: manhattan_pearson
            value: 34.41366600914297
          - type: manhattan_spearman
            value: 32.15352239729175
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 29.550332218260465
          - type: cos_sim_spearman
            value: 29.188654452524528
          - type: euclidean_pearson
            value: 33.80339596511417
          - type: euclidean_spearman
            value: 33.49607278843874
          - type: manhattan_pearson
            value: 33.589427741967334
          - type: manhattan_spearman
            value: 33.288312003652884
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 27.163752699585885
          - type: cos_sim_spearman
            value: 39.0544187582685
          - type: euclidean_pearson
            value: 38.93841642732113
          - type: euclidean_spearman
            value: 42.861814968921294
          - type: manhattan_pearson
            value: 38.78821319739337
          - type: manhattan_spearman
            value: 42.757121435678954
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 57.15429605615292
          - type: cos_sim_spearman
            value: 61.21576579300284
          - type: euclidean_pearson
            value: 59.2835939062064
          - type: euclidean_spearman
            value: 60.902713241808236
          - type: manhattan_pearson
            value: 59.510770285546364
          - type: manhattan_spearman
            value: 61.02979474159327
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 41.81726547830133
          - type: cos_sim_spearman
            value: 44.45123398124273
          - type: euclidean_pearson
            value: 46.44144033159064
          - type: euclidean_spearman
            value: 46.61348337508052
          - type: manhattan_pearson
            value: 46.48092744041165
          - type: manhattan_spearman
            value: 46.78049599791891
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 46.085942179295465
          - type: cos_sim_spearman
            value: 44.394736992467365
          - type: euclidean_pearson
            value: 47.06981069147408
          - type: euclidean_spearman
            value: 45.40499474054004
          - type: manhattan_pearson
            value: 46.96497631950794
          - type: manhattan_spearman
            value: 45.31936619298336
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 43.89526517578129
          - type: mrr
            value: 64.30753070458954
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.417
          - type: map_at_10
            value: 2.189
          - type: map_at_100
            value: 2.5669999999999997
          - type: map_at_1000
            value: 2.662
          - type: map_at_3
            value: 1.694
          - type: map_at_5
            value: 1.928
          - type: mrr_at_1
            value: 1.667
          - type: mrr_at_10
            value: 2.4899999999999998
          - type: mrr_at_100
            value: 2.8400000000000003
          - type: mrr_at_1000
            value: 2.928
          - type: mrr_at_3
            value: 1.944
          - type: mrr_at_5
            value: 2.178
          - type: ndcg_at_1
            value: 1.667
          - type: ndcg_at_10
            value: 2.913
          - type: ndcg_at_100
            value: 5.482
          - type: ndcg_at_1000
            value: 8.731
          - type: ndcg_at_3
            value: 1.867
          - type: ndcg_at_5
            value: 2.257
          - type: precision_at_1
            value: 1.667
          - type: precision_at_10
            value: 0.567
          - type: precision_at_100
            value: 0.213
          - type: precision_at_1000
            value: 0.053
          - type: precision_at_3
            value: 0.7779999999999999
          - type: precision_at_5
            value: 0.6669999999999999
          - type: recall_at_1
            value: 1.417
          - type: recall_at_10
            value: 5.028
          - type: recall_at_100
            value: 18.5
          - type: recall_at_1000
            value: 45.072
          - type: recall_at_3
            value: 2.083
          - type: recall_at_5
            value: 3.083
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.02871287128713
          - type: cos_sim_ap
            value: 17.404404071912694
          - type: cos_sim_f1
            value: 25.89285714285714
          - type: cos_sim_precision
            value: 29.292929292929294
          - type: cos_sim_recall
            value: 23.200000000000003
          - type: dot_accuracy
            value: 99.0118811881188
          - type: dot_ap
            value: 5.4739000785007335
          - type: dot_f1
            value: 12.178702570379436
          - type: dot_precision
            value: 8.774250440917108
          - type: dot_recall
            value: 19.900000000000002
          - type: euclidean_accuracy
            value: 99.03663366336633
          - type: euclidean_ap
            value: 19.20851069839796
          - type: euclidean_f1
            value: 27.16555612506407
          - type: euclidean_precision
            value: 27.865404837013667
          - type: euclidean_recall
            value: 26.5
          - type: manhattan_accuracy
            value: 99.03663366336633
          - type: manhattan_ap
            value: 19.12862913626528
          - type: manhattan_f1
            value: 26.96629213483146
          - type: manhattan_precision
            value: 28.99884925201381
          - type: manhattan_recall
            value: 25.2
          - type: max_accuracy
            value: 99.03663366336633
          - type: max_ap
            value: 19.20851069839796
          - type: max_f1
            value: 27.16555612506407
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 23.657118721775905
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 27.343558395037043
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 23.346327148080043
          - type: mrr
            value: 21.99097063067651
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.032
          - type: map_at_10
            value: 0.157
          - type: map_at_100
            value: 0.583
          - type: map_at_1000
            value: 1.48
          - type: map_at_3
            value: 0.066
          - type: map_at_5
            value: 0.105
          - type: mrr_at_1
            value: 10
          - type: mrr_at_10
            value: 16.99
          - type: mrr_at_100
            value: 18.284
          - type: mrr_at_1000
            value: 18.394
          - type: mrr_at_3
            value: 14.000000000000002
          - type: mrr_at_5
            value: 15.8
          - type: ndcg_at_1
            value: 8
          - type: ndcg_at_10
            value: 7.504
          - type: ndcg_at_100
            value: 5.339
          - type: ndcg_at_1000
            value: 6.046
          - type: ndcg_at_3
            value: 8.358
          - type: ndcg_at_5
            value: 8.142000000000001
          - type: precision_at_1
            value: 10
          - type: precision_at_10
            value: 8.6
          - type: precision_at_100
            value: 5.9799999999999995
          - type: precision_at_1000
            value: 2.976
          - type: precision_at_3
            value: 9.333
          - type: precision_at_5
            value: 9.2
          - type: recall_at_1
            value: 0.032
          - type: recall_at_10
            value: 0.252
          - type: recall_at_100
            value: 1.529
          - type: recall_at_1000
            value: 6.364
          - type: recall_at_3
            value: 0.08499999999999999
          - type: recall_at_5
            value: 0.154
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.44200000000000006
          - type: map_at_10
            value: 0.996
          - type: map_at_100
            value: 1.317
          - type: map_at_1000
            value: 1.624
          - type: map_at_3
            value: 0.736
          - type: map_at_5
            value: 0.951
          - type: mrr_at_1
            value: 4.082
          - type: mrr_at_10
            value: 10.102
          - type: mrr_at_100
            value: 10.978
          - type: mrr_at_1000
            value: 11.1
          - type: mrr_at_3
            value: 7.8229999999999995
          - type: mrr_at_5
            value: 9.252
          - type: ndcg_at_1
            value: 4.082
          - type: ndcg_at_10
            value: 3.821
          - type: ndcg_at_100
            value: 5.682
          - type: ndcg_at_1000
            value: 10.96
          - type: ndcg_at_3
            value: 4.813
          - type: ndcg_at_5
            value: 4.757
          - type: precision_at_1
            value: 4.082
          - type: precision_at_10
            value: 3.061
          - type: precision_at_100
            value: 1.367
          - type: precision_at_1000
            value: 0.46299999999999997
          - type: precision_at_3
            value: 4.7620000000000005
          - type: precision_at_5
            value: 4.898000000000001
          - type: recall_at_1
            value: 0.44200000000000006
          - type: recall_at_10
            value: 2.059
          - type: recall_at_100
            value: 7.439
          - type: recall_at_1000
            value: 25.191000000000003
          - type: recall_at_3
            value: 1.095
          - type: recall_at_5
            value: 1.725
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 54.925999999999995
          - type: ap
            value: 9.658236434063275
          - type: f1
            value: 43.469829154993064
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 40.7498585172609
          - type: f1
            value: 40.720120106546574
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 20.165152514024733
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 77.59432556476128
          - type: cos_sim_ap
            value: 30.37846072188074
          - type: cos_sim_f1
            value: 37.9231242656521
          - type: cos_sim_precision
            value: 24.064474898814172
          - type: cos_sim_recall
            value: 89.41952506596306
          - type: dot_accuracy
            value: 77.42146986946415
          - type: dot_ap
            value: 24.073476661930034
          - type: dot_f1
            value: 37.710580857735025
          - type: dot_precision
            value: 23.61083383243495
          - type: dot_recall
            value: 93.61477572559367
          - type: euclidean_accuracy
            value: 77.64797043571556
          - type: euclidean_ap
            value: 31.892152386237594
          - type: euclidean_f1
            value: 38.21154759481647
          - type: euclidean_precision
            value: 25.719243766554023
          - type: euclidean_recall
            value: 74.30079155672823
          - type: manhattan_accuracy
            value: 77.6539309769327
          - type: manhattan_ap
            value: 31.89545356309865
          - type: manhattan_f1
            value: 38.16428166172855
          - type: manhattan_precision
            value: 25.07247577238466
          - type: manhattan_recall
            value: 79.86807387862797
          - type: max_accuracy
            value: 77.6539309769327
          - type: max_ap
            value: 31.89545356309865
          - type: max_f1
            value: 38.21154759481647
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 76.56886715566422
          - type: cos_sim_ap
            value: 44.04480929059786
          - type: cos_sim_f1
            value: 43.73100054674686
          - type: cos_sim_precision
            value: 30.540367168647098
          - type: cos_sim_recall
            value: 76.97874961502926
          - type: dot_accuracy
            value: 74.80110218496526
          - type: dot_ap
            value: 26.487746384962758
          - type: dot_f1
            value: 40.91940608182585
          - type: dot_precision
            value: 25.9157358738502
          - type: dot_recall
            value: 97.18201416692331
          - type: euclidean_accuracy
            value: 76.97054371870998
          - type: euclidean_ap
            value: 47.079120397438416
          - type: euclidean_f1
            value: 45.866182572614115
          - type: euclidean_precision
            value: 34.580791490692945
          - type: euclidean_recall
            value: 68.0859254696643
          - type: manhattan_accuracy
            value: 76.96084138626927
          - type: manhattan_ap
            value: 47.168701873575976
          - type: manhattan_f1
            value: 45.985439966237614
          - type: manhattan_precision
            value: 34.974321938693635
          - type: manhattan_recall
            value: 67.11579919926086
          - type: max_accuracy
            value: 76.97054371870998
          - type: max_ap
            value: 47.168701873575976
          - type: max_f1
            value: 45.985439966237614
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 3.322530620021471
          - type: cos_sim_spearman
            value: 3.7583567993545195
          - type: euclidean_pearson
            value: 3.743782192206081
          - type: euclidean_spearman
            value: 3.758336694921531
          - type: manhattan_pearson
            value: 3.845233721819267
          - type: manhattan_spearman
            value: 3.8542743797718026
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 8.552640773272078
          - type: cos_sim_spearman
            value: 10.086360519713061
          - type: euclidean_pearson
            value: 9.902099049347935
          - type: euclidean_spearman
            value: 10.086351512635042
          - type: manhattan_pearson
            value: 9.898006826713932
          - type: manhattan_spearman
            value: 10.076531690161783
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 21.955999999999996
          - type: f1
            value: 20.596128116112816
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 17.6945509937099
          - type: cos_sim_spearman
            value: 19.312286927022825
          - type: euclidean_pearson
            value: 19.259393744977515
          - type: euclidean_spearman
            value: 19.312290390892713
          - type: manhattan_pearson
            value: 19.223527109645772
          - type: manhattan_spearman
            value: 19.32655209742963
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 18.657841790313405
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 16.82483158478091
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 19.71658789133091
          - type: mrr
            value: 23.480595238095237
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 22.475972401039495
          - type: mrr
            value: 25.993650793650797
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 1.026
          - type: map_at_10
            value: 1.6389999999999998
          - type: map_at_100
            value: 1.875
          - type: map_at_1000
            value: 1.9529999999999998
          - type: map_at_3
            value: 1.417
          - type: map_at_5
            value: 1.5110000000000001
          - type: mrr_at_1
            value: 1.525
          - type: mrr_at_10
            value: 2.478
          - type: mrr_at_100
            value: 2.779
          - type: mrr_at_1000
            value: 2.861
          - type: mrr_at_3
            value: 2.105
          - type: mrr_at_5
            value: 2.283
          - type: ndcg_at_1
            value: 1.525
          - type: ndcg_at_10
            value: 2.222
          - type: ndcg_at_100
            value: 3.81
          - type: ndcg_at_1000
            value: 6.465999999999999
          - type: ndcg_at_3
            value: 1.7489999999999999
          - type: ndcg_at_5
            value: 1.8980000000000001
          - type: precision_at_1
            value: 1.525
          - type: precision_at_10
            value: 0.543
          - type: precision_at_100
            value: 0.187
          - type: precision_at_1000
            value: 0.055
          - type: precision_at_3
            value: 0.992
          - type: precision_at_5
            value: 0.76
          - type: recall_at_1
            value: 1.026
          - type: recall_at_10
            value: 3.1780000000000004
          - type: recall_at_100
            value: 10.481
          - type: recall_at_1000
            value: 29.735
          - type: recall_at_3
            value: 1.8849999999999998
          - type: recall_at_5
            value: 2.2560000000000002
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 54.99699338544799
          - type: cos_sim_ap
            value: 57.78007274332544
          - type: cos_sim_f1
            value: 67.95391338895512
          - type: cos_sim_precision
            value: 51.46846413095811
          - type: cos_sim_recall
            value: 99.9766191255553
          - type: dot_accuracy
            value: 54.99699338544799
          - type: dot_ap
            value: 57.7791056074979
          - type: dot_f1
            value: 67.95391338895512
          - type: dot_precision
            value: 51.46846413095811
          - type: dot_recall
            value: 99.9766191255553
          - type: euclidean_accuracy
            value: 54.99699338544799
          - type: euclidean_ap
            value: 57.7800760462191
          - type: euclidean_f1
            value: 67.95391338895512
          - type: euclidean_precision
            value: 51.46846413095811
          - type: euclidean_recall
            value: 99.9766191255553
          - type: manhattan_accuracy
            value: 55.05712567648827
          - type: manhattan_ap
            value: 57.8146828916844
          - type: manhattan_f1
            value: 67.95900532295227
          - type: manhattan_precision
            value: 51.46811070998797
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 55.05712567648827
          - type: max_ap
            value: 57.8146828916844
          - type: max_f1
            value: 67.95900532295227
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 0.632
          - type: map_at_10
            value: 1.7510000000000001
          - type: map_at_100
            value: 2.004
          - type: map_at_1000
            value: 2.0660000000000003
          - type: map_at_3
            value: 1.493
          - type: map_at_5
            value: 1.635
          - type: mrr_at_1
            value: 0.632
          - type: mrr_at_10
            value: 1.7670000000000001
          - type: mrr_at_100
            value: 2.02
          - type: mrr_at_1000
            value: 2.081
          - type: mrr_at_3
            value: 1.528
          - type: mrr_at_5
            value: 1.649
          - type: ndcg_at_1
            value: 0.632
          - type: ndcg_at_10
            value: 2.32
          - type: ndcg_at_100
            value: 3.758
          - type: ndcg_at_1000
            value: 5.894
          - type: ndcg_at_3
            value: 1.7850000000000001
          - type: ndcg_at_5
            value: 2.044
          - type: precision_at_1
            value: 0.632
          - type: precision_at_10
            value: 0.411
          - type: precision_at_100
            value: 0.11399999999999999
          - type: precision_at_1000
            value: 0.03
          - type: precision_at_3
            value: 0.878
          - type: precision_at_5
            value: 0.653
          - type: recall_at_1
            value: 0.632
          - type: recall_at_10
            value: 4.109999999999999
          - type: recall_at_100
            value: 11.222
          - type: recall_at_1000
            value: 29.083
          - type: recall_at_3
            value: 2.634
          - type: recall_at_5
            value: 3.267
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 1.436
          - type: map_at_10
            value: 3.4099999999999997
          - type: map_at_100
            value: 4.128
          - type: map_at_1000
            value: 4.282
          - type: map_at_3
            value: 2.423
          - type: map_at_5
            value: 2.927
          - type: mrr_at_1
            value: 6
          - type: mrr_at_10
            value: 9.701
          - type: mrr_at_100
            value: 10.347000000000001
          - type: mrr_at_1000
            value: 10.427999999999999
          - type: mrr_at_3
            value: 8.267
          - type: mrr_at_5
            value: 9.004
          - type: ndcg_at_1
            value: 6
          - type: ndcg_at_10
            value: 5.856
          - type: ndcg_at_100
            value: 9.063
          - type: ndcg_at_1000
            value: 12.475999999999999
          - type: ndcg_at_3
            value: 5.253
          - type: ndcg_at_5
            value: 5.223
          - type: precision_at_1
            value: 6
          - type: precision_at_10
            value: 3.125
          - type: precision_at_100
            value: 0.812
          - type: precision_at_1000
            value: 0.169
          - type: precision_at_3
            value: 4.7669999999999995
          - type: precision_at_5
            value: 4.15
          - type: recall_at_1
            value: 1.436
          - type: recall_at_10
            value: 6.544999999999999
          - type: recall_at_100
            value: 16.634999999999998
          - type: recall_at_1000
            value: 33.987
          - type: recall_at_3
            value: 3.144
          - type: recall_at_5
            value: 4.519
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 4.1000000000000005
          - type: map_at_10
            value: 7.911
          - type: map_at_100
            value: 8.92
          - type: map_at_1000
            value: 9.033
          - type: map_at_3
            value: 6.4
          - type: map_at_5
            value: 7.23
          - type: mrr_at_1
            value: 4.1000000000000005
          - type: mrr_at_10
            value: 7.911
          - type: mrr_at_100
            value: 8.92
          - type: mrr_at_1000
            value: 9.033
          - type: mrr_at_3
            value: 6.4
          - type: mrr_at_5
            value: 7.23
          - type: ndcg_at_1
            value: 4.1000000000000005
          - type: ndcg_at_10
            value: 10.374
          - type: ndcg_at_100
            value: 15.879999999999999
          - type: ndcg_at_1000
            value: 19.246
          - type: ndcg_at_3
            value: 7.217
          - type: ndcg_at_5
            value: 8.706
          - type: precision_at_1
            value: 4.1000000000000005
          - type: precision_at_10
            value: 1.8399999999999999
          - type: precision_at_100
            value: 0.45599999999999996
          - type: precision_at_1000
            value: 0.073
          - type: precision_at_3
            value: 3.2
          - type: precision_at_5
            value: 2.64
          - type: recall_at_1
            value: 4.1000000000000005
          - type: recall_at_10
            value: 18.4
          - type: recall_at_100
            value: 45.6
          - type: recall_at_1000
            value: 72.89999999999999
          - type: recall_at_3
            value: 9.6
          - type: recall_at_5
            value: 13.200000000000001
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 20.353982300884958
          - type: f1
            value: 12.69588085868714
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 55.497185741088174
          - type: ap
            value: 20.43046737602198
          - type: f1
            value: 48.93980371558734
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 32.588967426128654
          - type: cos_sim_spearman
            value: 42.14900040682406
          - type: euclidean_pearson
            value: 39.568373451615685
          - type: euclidean_spearman
            value: 42.14899152396297
          - type: manhattan_pearson
            value: 39.5220710244444
          - type: manhattan_spearman
            value: 42.14787636056146
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 1.1655156335725807
          - type: mrr
            value: 0.2361111111111111
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 1.9029999999999998
          - type: map_at_10
            value: 2.9139999999999997
          - type: map_at_100
            value: 3.2259999999999995
          - type: map_at_1000
            value: 3.2870000000000004
          - type: map_at_3
            value: 2.483
          - type: map_at_5
            value: 2.71
          - type: mrr_at_1
            value: 2.02
          - type: mrr_at_10
            value: 3.064
          - type: mrr_at_100
            value: 3.382
          - type: mrr_at_1000
            value: 3.4419999999999997
          - type: mrr_at_3
            value: 2.622
          - type: mrr_at_5
            value: 2.855
          - type: ndcg_at_1
            value: 2.02
          - type: ndcg_at_10
            value: 3.639
          - type: ndcg_at_100
            value: 5.431
          - type: ndcg_at_1000
            value: 7.404
          - type: ndcg_at_3
            value: 2.723
          - type: ndcg_at_5
            value: 3.1350000000000002
          - type: precision_at_1
            value: 2.02
          - type: precision_at_10
            value: 0.626
          - type: precision_at_100
            value: 0.159
          - type: precision_at_1000
            value: 0.033
          - type: precision_at_3
            value: 1.17
          - type: precision_at_5
            value: 0.9199999999999999
          - type: recall_at_1
            value: 1.9029999999999998
          - type: recall_at_10
            value: 5.831
          - type: recall_at_100
            value: 14.737
          - type: recall_at_1000
            value: 30.84
          - type: recall_at_3
            value: 3.2870000000000004
          - type: recall_at_5
            value: 4.282
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 25.3866845998655
          - type: f1
            value: 23.404809615998495
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.34969737726966
          - type: f1
            value: 37.88244646590394
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 1.5
          - type: map_at_10
            value: 2.0740000000000003
          - type: map_at_100
            value: 2.2079999999999997
          - type: map_at_1000
            value: 2.241
          - type: map_at_3
            value: 1.933
          - type: map_at_5
            value: 2.023
          - type: mrr_at_1
            value: 1.5
          - type: mrr_at_10
            value: 2.0740000000000003
          - type: mrr_at_100
            value: 2.2079999999999997
          - type: mrr_at_1000
            value: 2.241
          - type: mrr_at_3
            value: 1.933
          - type: mrr_at_5
            value: 2.023
          - type: ndcg_at_1
            value: 1.5
          - type: ndcg_at_10
            value: 2.368
          - type: ndcg_at_100
            value: 3.309
          - type: ndcg_at_1000
            value: 4.593
          - type: ndcg_at_3
            value: 2.0789999999999997
          - type: ndcg_at_5
            value: 2.242
          - type: precision_at_1
            value: 1.5
          - type: precision_at_10
            value: 0.33
          - type: precision_at_100
            value: 0.084
          - type: precision_at_1000
            value: 0.019
          - type: precision_at_3
            value: 0.8330000000000001
          - type: precision_at_5
            value: 0.58
          - type: recall_at_1
            value: 1.5
          - type: recall_at_10
            value: 3.3000000000000003
          - type: recall_at_100
            value: 8.4
          - type: recall_at_1000
            value: 19.400000000000002
          - type: recall_at_3
            value: 2.5
          - type: recall_at_5
            value: 2.9000000000000004
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 38.94
          - type: f1
            value: 38.4171730136538
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 54.141851651326476
          - type: cos_sim_ap
            value: 55.63298007661861
          - type: cos_sim_f1
            value: 67.85195936139333
          - type: cos_sim_precision
            value: 51.68601437258153
          - type: cos_sim_recall
            value: 98.73284054910243
          - type: dot_accuracy
            value: 54.141851651326476
          - type: dot_ap
            value: 55.63298007661861
          - type: dot_f1
            value: 67.85195936139333
          - type: dot_precision
            value: 51.68601437258153
          - type: dot_recall
            value: 98.73284054910243
          - type: euclidean_accuracy
            value: 54.141851651326476
          - type: euclidean_ap
            value: 55.63298007661861
          - type: euclidean_f1
            value: 67.85195936139333
          - type: euclidean_precision
            value: 51.68601437258153
          - type: euclidean_recall
            value: 98.73284054910243
          - type: manhattan_accuracy
            value: 54.03356794802382
          - type: manhattan_ap
            value: 55.650247173847944
          - type: manhattan_f1
            value: 67.83667621776503
          - type: manhattan_precision
            value: 51.32791327913279
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 54.141851651326476
          - type: max_ap
            value: 55.650247173847944
          - type: max_f1
            value: 67.85195936139333
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 56.88999999999999
          - type: ap
            value: 56.075855594697835
          - type: f1
            value: 56.31094564241924
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 10.023575042969506
          - type: cos_sim_spearman
            value: 6.135169971774927
          - type: euclidean_pearson
            value: 9.219072035876794
          - type: euclidean_spearman
            value: 6.147945631319713
          - type: manhattan_pearson
            value: 9.208267921398097
          - type: manhattan_spearman
            value: 6.156480815791583
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 5.7230819885069435
          - type: cos_sim_spearman
            value: 6.116111130034651
          - type: euclidean_pearson
            value: 5.9142712292657205
          - type: euclidean_spearman
            value: 6.115732664912588
          - type: manhattan_pearson
            value: 5.892970378623552
          - type: manhattan_spearman
            value: 6.100463075081302
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 18.353401358720397
          - type: cos_sim_spearman
            value: 33.700002511275095
          - type: euclidean_pearson
            value: 27.654605278731136
          - type: euclidean_spearman
            value: 33.700002511275095
          - type: manhattan_pearson
            value: 29.174977260571083
          - type: manhattan_spearman
            value: 33.901862553268366
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 44.66287398363386
          - type: cos_sim_spearman
            value: 45.60317964713117
          - type: euclidean_pearson
            value: 47.434263079423
          - type: euclidean_spearman
            value: 45.603111040461606
          - type: manhattan_pearson
            value: 47.3272049502668
          - type: manhattan_spearman
            value: 45.506449459872805
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 60.05480951659048
          - type: mrr
            value: 69.58201013422746
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 1.159
          - type: map_at_10
            value: 2.624
          - type: map_at_100
            value: 3.259
          - type: map_at_1000
            value: 3.4090000000000003
          - type: map_at_3
            value: 1.9109999999999998
          - type: map_at_5
            value: 2.254
          - type: mrr_at_1
            value: 5.87
          - type: mrr_at_10
            value: 8.530999999999999
          - type: mrr_at_100
            value: 9.142999999999999
          - type: mrr_at_1000
            value: 9.229
          - type: mrr_at_3
            value: 7.498
          - type: mrr_at_5
            value: 8.056000000000001
          - type: ndcg_at_1
            value: 5.87
          - type: ndcg_at_10
            value: 4.641
          - type: ndcg_at_100
            value: 7.507999999999999
          - type: ndcg_at_1000
            value: 10.823
          - type: ndcg_at_3
            value: 4.775
          - type: ndcg_at_5
            value: 4.515000000000001
          - type: precision_at_1
            value: 5.87
          - type: precision_at_10
            value: 2.632
          - type: precision_at_100
            value: 0.762
          - type: precision_at_1000
            value: 0.166
          - type: precision_at_3
            value: 4.2299999999999995
          - type: precision_at_5
            value: 3.5450000000000004
          - type: recall_at_1
            value: 1.159
          - type: recall_at_10
            value: 4.816
          - type: recall_at_100
            value: 13.841999999999999
          - type: recall_at_1000
            value: 30.469
          - type: recall_at_3
            value: 2.413
          - type: recall_at_5
            value: 3.3300000000000005
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 26.786000000000005
          - type: f1
            value: 25.70512339530705
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 20.691386720429243
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 17.1882521768033
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 2.9000000000000004
          - type: map_at_10
            value: 4.051
          - type: map_at_100
            value: 4.277
          - type: map_at_1000
            value: 4.315
          - type: map_at_3
            value: 3.567
          - type: map_at_5
            value: 3.897
          - type: mrr_at_1
            value: 2.9000000000000004
          - type: mrr_at_10
            value: 4.051
          - type: mrr_at_100
            value: 4.277
          - type: mrr_at_1000
            value: 4.315
          - type: mrr_at_3
            value: 3.567
          - type: mrr_at_5
            value: 3.897
          - type: ndcg_at_1
            value: 2.9000000000000004
          - type: ndcg_at_10
            value: 4.772
          - type: ndcg_at_100
            value: 6.214
          - type: ndcg_at_1000
            value: 7.456
          - type: ndcg_at_3
            value: 3.805
          - type: ndcg_at_5
            value: 4.390000000000001
          - type: precision_at_1
            value: 2.9000000000000004
          - type: precision_at_10
            value: 0.7100000000000001
          - type: precision_at_100
            value: 0.146
          - type: precision_at_1000
            value: 0.025
          - type: precision_at_3
            value: 1.5
          - type: precision_at_5
            value: 1.18
          - type: recall_at_1
            value: 2.9000000000000004
          - type: recall_at_10
            value: 7.1
          - type: recall_at_100
            value: 14.6
          - type: recall_at_1000
            value: 24.9
          - type: recall_at_3
            value: 4.5
          - type: recall_at_5
            value: 5.8999999999999995
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 56.21999999999999
          - type: ap
            value: 36.53654363772411
          - type: f1
            value: 54.922396485449674

{MODEL_NAME}

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 1468721 with parameters:

{'batch_size': 160, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 100,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors