metadata
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-large_cola_sp0_ar0_one
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Accuracy
type: accuracy
value: 0.87890625
t5-large_cola_sp0_ar0_one
This model is a fine-tuned version of t5-large on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4212
- Accuracy: 0.8789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6975 | 0.05 | 25 | 0.6708 | 0.6913 |
0.5747 | 0.11 | 50 | 0.5123 | 0.7210 |
0.4924 | 0.16 | 75 | 0.5004 | 0.7939 |
0.4259 | 0.21 | 100 | 0.4760 | 0.7987 |
0.3834 | 0.27 | 125 | 0.5001 | 0.8111 |
0.3942 | 0.32 | 150 | 0.4982 | 0.8092 |
0.4213 | 0.37 | 175 | 0.5078 | 0.8150 |
0.3845 | 0.42 | 200 | 0.4346 | 0.8092 |
0.4145 | 0.48 | 225 | 0.4562 | 0.8150 |
0.3751 | 0.53 | 250 | 0.4948 | 0.8169 |
0.4134 | 0.58 | 275 | 0.4356 | 0.8236 |
0.3777 | 0.64 | 300 | 0.4627 | 0.8188 |
0.3815 | 0.69 | 325 | 0.4772 | 0.8226 |
0.367 | 0.74 | 350 | 0.4117 | 0.8313 |
0.342 | 0.8 | 375 | 0.4177 | 0.8351 |
0.3136 | 0.85 | 400 | 0.5026 | 0.8265 |
0.3222 | 0.9 | 425 | 0.5323 | 0.8303 |
0.3863 | 0.96 | 450 | 0.4937 | 0.8245 |
0.348 | 1.01 | 475 | 0.4704 | 0.8188 |
0.2134 | 1.06 | 500 | 0.6430 | 0.8207 |
0.2671 | 1.11 | 525 | 0.5518 | 0.8226 |
0.1892 | 1.17 | 550 | 0.5869 | 0.8370 |
0.2184 | 1.22 | 575 | 0.5816 | 0.8332 |
0.22 | 1.27 | 600 | 0.5451 | 0.8274 |
0.1982 | 1.33 | 625 | 0.7300 | 0.8313 |
0.2734 | 1.38 | 650 | 0.7040 | 0.8351 |
0.2186 | 1.43 | 675 | 0.6650 | 0.8341 |
0.2835 | 1.49 | 700 | 0.6628 | 0.8322 |
0.2503 | 1.54 | 725 | 0.5194 | 0.8341 |
0.2438 | 1.59 | 750 | 0.5362 | 0.8313 |
0.2307 | 1.65 | 775 | 0.5405 | 0.8293 |
0.2111 | 1.7 | 800 | 0.6129 | 0.8265 |
0.1952 | 1.75 | 825 | 0.6411 | 0.8255 |
0.2873 | 1.8 | 850 | 0.6279 | 0.8245 |
0.295 | 1.86 | 875 | 0.5938 | 0.8236 |
0.2967 | 1.91 | 900 | 0.5694 | 0.8265 |
0.2128 | 1.96 | 925 | 0.5576 | 0.8265 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.11.6