vxbrandon's picture
End of training
6ec6c71
metadata
license: apache-2.0
base_model: t5-large
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: t5-large_cola_dense_epochs-5
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: cola
          split: train
          args: cola
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8813559322033898

t5-large_cola_dense_epochs-5

This model is a fine-tuned version of t5-large on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4167
  • Accuracy: 0.8814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 0
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6749 0.19 10 0.6270 0.7095
0.5772 0.37 20 0.5947 0.7101
0.6066 0.56 30 0.5545 0.7101
0.5355 0.75 40 0.4788 0.7475
0.4398 0.93 50 0.3992 0.8469
0.3932 1.12 60 0.3737 0.8638
0.3756 1.31 70 0.3606 0.8650
0.4004 1.5 80 0.3645 0.8603
0.3198 1.68 90 0.3201 0.8749
0.3129 1.87 100 0.3638 0.8697
0.2763 2.06 110 0.3091 0.8819
0.3207 2.24 120 0.3781 0.8673
0.2614 2.43 130 0.3351 0.8773
0.2909 2.62 140 0.3404 0.8662
0.2899 2.8 150 0.3277 0.8796
0.2687 2.99 160 0.3520 0.8679
0.1993 3.18 170 0.3319 0.8854
0.2584 3.36 180 0.3901 0.8732
0.2502 3.55 190 0.3766 0.8773
0.2234 3.74 200 0.3360 0.8895
0.2101 3.93 210 0.3334 0.8849
0.1708 4.11 220 0.3819 0.8714
0.1664 4.3 230 0.3690 0.8773
0.2217 4.49 240 0.4181 0.8814
0.2034 4.67 250 0.3607 0.8796
0.1948 4.86 260 0.4167 0.8814

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1