vxbrandon's picture
Training in progress, step 750
980fdf0 verified
from transformers import TrainerCallback, Trainer
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from peft import PeftModel
from datasets import Dataset
from transformers.utils import is_sagemaker_mp_enabled, is_sagemaker_dp_enabled
from typing import Any, Dict, Union, Optional, Tuple
from torch.nn import MSELoss
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
import time
import os
import copy
from transformers.models.mistral.modeling_mistral import (
MistralMLP,
MistralAttention,
MistralModel,
MistralDecoderLayer,
MistralConfig,
MISTRAL_ATTENTION_CLASSES,
MistralRMSNorm,
MistralForCausalLM,
)
from experiments.models.sparse_mistral.svd_router import (
low_rank_approximation,
SparsePredictor,
)
from utils.utils import (
print_size_of_model,
is_running_deepspeed,
is_mainprocess,
get_datetime,
ds_print,
)
class SparseSFTTTrainer(SFTTrainer):
def __init__(self, *args, **kwargs):
self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
self.use_spm_loss = False
self.freeze_original_weights = False
self.regularization_type = kwargs.pop(
"regularization_type", "L1 positive activation"
)
assert self.regularization_type in [
"L2 activation",
"L1 positive activation",
], f"Invalid regularization type: {self.regularization_type}"
self.sparse_layers = []
self.sparse_decoder_layers = []
super(SparseSFTTTrainer, self).__init__(*args, **kwargs)
def initialize_sparse_silu_layers(self, model):
self.sparse_layers = [
m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
]
def initialize_sparse_decoder_layers(self, model):
self.sparse_decoder_layers = [
m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
]
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
"""
Override the huggingface's training_step function to add a regularization term.
A regularization term is computed with intermediate values, which are freed after "backward()."
You need to set `retain_graph=True` inside `backward` function to keep the values.
"""
model.train()
inputs = self._prepare_inputs(inputs)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if not self.freeze_original_weights:
if loss is not None:
self.accelerator.backward(loss, retain_graph=False)
if self.use_sparse_regularization:
regularization_loss = self.compute_regularization(model)
if self.args.n_gpu > 1:
regularization_loss = regularization_loss.mean()
if regularization_loss is not None:
self.accelerator.backward(regularization_loss, retain_graph=True)
loss += regularization_loss
if self.use_spm_loss:
spm_loss = self.compute_spm_loss(model)
if self.args.n_gpu > 1:
spm_loss = spm_loss.mean()
if spm_loss is not None:
self.accelerator.backward(spm_loss, retain_graph=False)
loss += spm_loss
return loss.detach() / self.args.gradient_accumulation_steps
def compute_regularization(self, model):
"""
Compute a sparse regularization loss for SiLU
"""
loss = 0
if len(self.sparse_layers) == 0:
self.initialize_sparse_silu_layers(model)
num_layers = len(self.sparse_layers)
for module in self.sparse_layers:
if module.activation_norm is not None:
loss += module.activation_norm
loss /= num_layers
loss *= self.regularization_coefficient
if self.state.global_step % 20 == 0 and loss != 0:
print("Negative relularizer loss: ", loss.item())
return loss
def compute_spm_loss(self, model):
loss = 0
if len(self.sparse_decoder_layers) == 0:
self.initialize_sparse_decoder_layers(model)
for module in self.sparse_decoder_layers:
if module.distill_loss != None:
loss += module.distill_loss
if self.state.global_step % 20 == 0 and loss != 0:
print("Sparse Predictor Distillation loss: ", loss.item())
return loss
# def compute_loss(self, model, inputs, return_outputs=False):
# loss = super().compute_loss(model, inputs, return_outputs)
#
# if is_sagemaker_mp_enabled():
# import smdistributed.modelparallel.torch as smp
# @smp.step()
# def smp_forward_backward(model, inputs, gradient_accumulation_steps=1):
# outputs = model(**inputs)
# loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
# loss /= gradient_accumulation_steps
# model.backward(loss)
# return loss
#
# loss_mb = smp_forward_backward(
# model, inputs, self.args.gradient_accumulation_steps
# )
# if self.use_sparse_regularization:
# return loss_mb.reduce_mean().detach().to(
# self.args.device
# ) + self.regularization_coefficient * self.compute_regularization(model)
# else:
# return loss_mb.reduce_mean().detach().to(self)
#
# if return_outputs:
# classification_loss, outputs = loss
# else:
# classification_loss = loss
#
# loss = classification_loss
# if self.use_sparse_regularization:
# regularization_loss = self.compute_regularization(model)
# loss += self.regularization_coefficient * regularization_loss
#
# return (loss, outputs) if return_outputs else loss
class SparseTrainer(Trainer):
def __init__(self, *args, **kwargs):
self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
self.use_spm_loss = False
self.freeze_original_weights = False
self.regularization_type = kwargs.pop(
"regularization_type", "L1 positive activation"
)
assert self.regularization_type in [
"L2 activation",
"L1 positive activation",
], f"Invalid regularization type: {self.regularization_type}"
self.sparse_layers = []
self.sparse_decoder_layers = []
super(SparseTrainer, self).__init__(*args, **kwargs)
def initialize_sparse_silu_layers(self, model):
self.sparse_layers = [
m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
]
def initialize_sparse_decoder_layers(self, model):
self.sparse_decoder_layers = [
m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
]
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
"""
Override the huggingface's training_step function to add a regularization term.
A regularization term is computed with intermediate values, which are freed after "backward()."
You need to set `retain_graph=True` inside `backward` function to keep the values.
"""
model.train()
inputs = self._prepare_inputs(inputs)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if not self.freeze_original_weights:
if loss is not None:
self.accelerator.backward(loss, retain_graph=False)
if self.use_sparse_regularization:
regularization_loss = self.compute_regularization(model)
if self.args.n_gpu > 1:
regularization_loss = regularization_loss.mean()
if regularization_loss is not None:
self.accelerator.backward(regularization_loss, retain_graph=True)
loss += regularization_loss
if self.use_spm_loss:
spm_loss = self.compute_spm_loss(model)
if self.args.n_gpu > 1:
spm_loss = spm_loss.mean()
if spm_loss is not None:
self.accelerator.backward(spm_loss, retain_graph=False)
loss += spm_loss
return loss.detach() / self.args.gradient_accumulation_steps
def compute_regularization(self, model):
"""
Compute a sparse regularization loss for SiLU
"""
loss = 0
if len(self.sparse_layers) == 0:
self.initialize_sparse_silu_layers(model)
num_layers = len(self.sparse_layers)
for module in self.sparse_layers:
if module.activation_norm is not None:
loss += module.activation_norm
loss /= num_layers
loss *= self.regularization_coefficient
if self.state.global_step % 20 == 0 and loss != 0:
print("Negative relularizer loss: ", loss.item())
return loss
def compute_spm_loss(self, model):
loss = 0
if len(self.sparse_decoder_layers) == 0:
self.initialize_sparse_decoder_layers(model)
for module in self.sparse_decoder_layers:
if module.distill_loss != None:
loss += module.distill_loss
if self.state.global_step % 20 == 0 and loss != 0:
print("Sparse Predictor Distillation loss: ", loss.item())
return loss
class SparseSiLU(nn.SiLU):
def __init__(self, threshold):
super(SparseSiLU, self).__init__()
self.threshold = threshold
self.m = nn.Threshold(self.threshold, 0)
def set_new_threshold(self, threshold):
self.threshold = threshold
self.m = nn.Threshold(threshold, 0)
def forward(self, x):
act = super(SparseSiLU, self).forward(x)
return self.m(act) - self.m(-act)
class MistralSparseSiluMLP(MistralMLP):
def __init__(self, config, *args, **kwargs):
super().__init__(config)
self.swish_outputs = None
self.relu = nn.ReLU()
self.kill_sparse_swish_outputs = False
self.dead_percentage = 0
self.is_stats = False
self.visit_counts = 0
# Hyperparameters to tune
self.dead_threshold = kwargs.pop("dead_threshold", 0)
self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", True)
self.regularization_type = kwargs.pop(
"regularization_type", "L1 regularization"
)
self.regularization_threshold = kwargs.pop("regularization_threshold", 0.5)
self.use_relu = kwargs.pop("use_relu", False)
self.activation_norm = None
# Activation Histograms
self.is_collect_histogram = False
num_bins = 1000
self.histogram_bins = torch.linspace(-1, 1, num_bins - 2)
self.histogram_bins = torch.cat(
[torch.tensor([-torch.inf]), self.histogram_bins, torch.tensor([torch.inf])]
)
self.pre_act_hist_counts = torch.zeros(num_bins - 1)
self.post_act_hist_counts = torch.zeros(num_bins - 1)
self.t = 0
self.agg_sparsity = 0
# Sparse activation function
self.sparse_act_fn = SparseSiLU(threshold=self.dead_threshold)
def activate_stats(self, is_collect_histogram: bool = True):
self.is_stats = True
self.dead_percentage = 0
self.visit_counts = 0
self.is_collect_histogram = is_collect_histogram
self.histogram_counts = torch.zeros(2000) # .to(self.down_proj.weight.device)
def deactivate_stats(self):
self.is_stats = False
def collect_stats(self, pre_activation, post_activation):
start_time = time.time()
pre_activation = pre_activation.float().cpu().detach()
post_activation = post_activation.float().cpu().detach()
# self.histogram_bins=self.histogram_bins.to(pre_activation.device).type(pre_activation.dtype)
self.pre_act_hist_counts += torch.histogram(
pre_activation, bins=self.histogram_bins
)[0]
self.post_act_hist_counts += torch.histogram(
torch.abs(post_activation), bins=self.histogram_bins
)[0]
self.t += time.time() - start_time
if self.visit_counts % 30 == 0:
print(f"Time taken to collect stats: {self.t}s.")
def forward(
self,
x,
sp_mask: torch.tensor = None,
):
"""
If kill_sparse_swish_outputs is set to False, this layer functions exactly like a normal MLP layer.
"""
if sp_mask != None: # When sparse mask is given
return self.down_proj(
self.sparse_act_fn(self.gate_proj(x) * sp_mask) * self.up_proj(x)
) # Todo: This doesn't accelerate runtime (instead slowing down)
elif self.use_relu:
post_act = self.relu(self.gate_proj(x))
if self.is_stats:
dead_neurons = post_act == 0
dead_percentage = dead_neurons.float().mean()
agg_sparsity = dead_neurons.all(dim=0).float().mean()
self.dead_percentage = (
self.dead_percentage * self.visit_counts + dead_percentage
) / (self.visit_counts + 1)
self.agg_sparsity = (
self.agg_sparsity * self.visit_counts + agg_sparsity
) / (self.visit_counts + 1)
self.visit_counts += 1
return self.down_proj(post_act * self.up_proj(x))
else:
pre_act = self.gate_proj(x)
post_act = self.act_fn(pre_act)
if self.kill_sparse_swish_outputs:
dead_neurons = post_act.abs() <= self.dead_threshold
dead_percentage = dead_neurons.float().mean()
agg_sparsity = dead_neurons.all(dim=0).float().mean()
if self.is_stats:
self.dead_percentage = (
self.dead_percentage * self.visit_counts + dead_percentage
) / (self.visit_counts + 1)
self.agg_sparsity = (
self.agg_sparsity * self.visit_counts + agg_sparsity
) / (self.visit_counts + 1)
self.visit_counts += 1
# print(self.agg_sparsity)
# Collect histogram stats
if (
self.is_collect_histogram
and pre_act.eq(0).float().mean() < 0.99
): # Padded dataset
self.collect_stats(pre_act, post_act)
post_act[dead_neurons] = 0
out = self.down_proj(post_act * self.up_proj(x))
if self.use_sparse_regularization:
if self.regularization_type == "L1 regularization":
self.activation_norm = torch.abs(post_act)[
post_act < self.regularization_threshold
].mean()
elif self.regularization_type == "L2 regularization":
self.activation_norm = torch.sqrt(
torch.square(post_act)[post_act < self.regularization_threshold]
).mean()
return out
class SparseMistralDecoderLayer(MistralDecoderLayer):
def __init__(
self,
config: MistralConfig,
layer_idx: int,
decoder_layer: MistralDecoderLayer,
init_svd: bool = True,
*args,
**kwargs,
):
assert isinstance(
decoder_layer.mlp, MistralSparseSiluMLP
), f"{type(decoder_layer.mlp)} should MistralSparseSiluMLP."
super().__init__(config, layer_idx)
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.init_svd = init_svd
self.self_attn = decoder_layer.self_attn
self.mlp = decoder_layer.mlp
self.input_layernorm = decoder_layer.input_layernorm
self.post_attention_layernorm = decoder_layer.post_attention_layernorm
# Sparse predictor for mlp (initialized with SVD decomposed matrix)
self.low_rank = kwargs.pop("low_rank", 64)
self.sparse_act_func = decoder_layer.mlp.sparse_act_fn
print(
f"Setting {layer_idx}th mlp layer's sparse predictor... svd init: {init_svd}"
)
self.sp_mlp = low_rank_approximation(
decoder_layer.mlp.gate_proj,
act_func=self.sparse_act_func,
init_svd=init_svd,
)
self.use_async = kwargs.pop("use_async", False)
self.use_sparse_predictor = False
self.distill_loss = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
print("hidden_states shape: ", hidden_states.shape)
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
sp_mask = None
if self.use_async:
sp_mask = self.sp_mlp(hidden_states)
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
if not self.use_async:
sp_mask = self.sp_mlp(hidden_states)
# Compute distillation loss
gating_output = self.mlp.sparse_act_fn(self.mlp.gate_proj(hidden_states))
loss_func = MSELoss()
self.distill_loss = loss_func(sp_mask, gating_output)
# Convert sp mask into binary form
sp_mask = sp_mask > 0
if self.training:
sp_mask = None
# if not self.use_sparse_predictor:
# sp_mask = None
hidden_states = self.mlp(hidden_states, sp_mask)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class SparseMistralConfig(MistralConfig):
model_type = "sparse_mistral"
def __init__(self, **kwargs):
super().__init__(**kwargs)
class SparseMistralforCausalLM(MistralForCausalLM):
config_class = SparseMistralConfig
def __init__(self, config):
super().__init__(config)
self.config = config
if config.use_sparse_model:
self.apply_sparse_mlp()
if config.thresholds is not None:
for idx, m in enumerate(self.model.layers):
if isinstance(m.mlp, MistralSparseSiluMLP):
m.mlp.dead_threshold = config.thresholds[idx]
m.mlp.sparse_act_fn.set_new_threshold(m.mlp.dead_threshold)
m.mlp.kill_sparse_swish_outputs = True
m.mlp.use_relu = config.use_relu
if config.use_sparse_predictor:
self.apply_sparse_predictor(init_svd=config.init_svd)
def apply_sparse_mlp(self):
apply_mistral_sparse_silu_mlp(
self,
config=self.config,
use_sparse_regularization=self.config.use_sparse_regularization,
)
def apply_sparse_predictor(self, init_svd: bool = True):
apply_mistral_sparse_decoder_layer(self, config=self.config, init_svd=init_svd)
class GracefulRegularizationScheduler(TrainerCallback):
def __init__(
self,
num_warmup_steps=40,
is_enabled: bool = False,
model_name: str = "mistral",
test_dataset: Dataset = None,
targeted_sparsity: float = 0.5,
keep_regularization_with_kill: bool = False,
):
"""Scheduler for regularizing the model first before applying the dead threshold.
:param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
:param increment_ratio: by how much to increase the dead threshold.
For example, 0.5 means "increase the threshold by 0.5 * desired threshold
"""
self.num_warmup_steps = num_warmup_steps
self.is_enabled = is_enabled
self.model_name = model_name
self.test_dataset = test_dataset
self.targeted_sparsity = targeted_sparsity
self.keep_regularization_with_kill = keep_regularization_with_kill
self.act_hist_path = (
f"/matx/u/vxbrando/histograms/warm_up_reg_{targeted_sparsity}/act_hist.pt"
)
if self.is_enabled:
print("GracefulRegularizationScheduler is enabled.")
self.trainer = None
def set_trainer(self, trainer):
self.trainer = trainer
def on_step_end(self, args, state, control, **kwargs):
if not self.is_enabled:
return
model = kwargs["model"]
if isinstance(model, PeftModel):
base_model = model.get_base_model()
else:
base_model = model
if state.global_step == 1:
ds_print("Setting an initial reg threshold to 0.1")
set_regularization_threshold(base_model, 0.1)
# if state.global_step >= self.num_warmup_steps and state.global_step % 50 == 0:
if state.global_step == self.num_warmup_steps:
activate_stats(base_model)
enable_sparse_silu(base_model)
self.trainer.evaluate()
save_act_hist(base_model, self.act_hist_path)
set_sparse_threshold(base_model, self.targeted_sparsity, True)
deactivate_stats(base_model)
self.trainer.use_sparse_regularization = self.keep_regularization_with_kill
# set_layer_specific_regularization(model.get_base_model())
print_dead_neuron_stats(model.get_base_model())
if state.global_step % 2000 == 0:
if is_mainprocess():
ds_print(
f"Saving to /scr/lukeai/{self.model_name}_{state.global_step}.pt",
)
torch.save(
model.state_dict(),
f"/scr/lukeai/{self.model_name}_{state.global_step}.pt",
)
class GradualSparsificationScheduler(TrainerCallback):
def __init__(
self,
num_warmup_steps=40,
increment_ratio=0.5,
is_enabled: bool = False,
model_name: str = "mistral",
):
"""Scheduler for gradually increasing a dead threshold until it reaches the desired threshold.
:param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
:param increment_ratio: by how much to increase the dead threshold.
For example, 0.5 means "increase the threshold by 0.5 * desired threshold
"""
self.num_warmup_steps = num_warmup_steps
self.increment_ratio = increment_ratio
self.step_size = int(num_warmup_steps * increment_ratio)
self.is_enabled = is_enabled
self.model_name = model_name
def on_step_end(self, args, state, control, **kwargs):
model = kwargs["model"]
if not self.is_enabled:
if state.global_step <= 10:
for module in model.modules():
if isinstance(module, MistralSparseSiluMLP):
module.current_dead_threshold = module.dead_threshold
return
current_dead_threshold = 0
desired_dead_threshold = 0
if is_mainprocess():
ds_print(state.global_step)
if state.global_step % self.step_size == 2:
for module in model.modules():
if isinstance(module, MistralSparseSiluMLP):
desired_dead_threshold = copy.deepcopy(module.dead_threshold)
current_dead_threshold = module.current_dead_threshold
current_dead_threshold += (
self.increment_ratio * desired_dead_threshold
)
module.current_dead_threshold = min(
desired_dead_threshold, current_dead_threshold
)
if is_running_deepspeed and is_mainprocess():
ds_print(
state.global_step,
current_dead_threshold,
desired_dead_threshold,
)
if state.global_step % 2000 == 0:
if is_running_deepspeed and is_mainprocess():
ds_print(
f"Saving to /matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
)
torch.save(
model.state_dict(),
f"/matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
)
def get_sparse_mistral_config(
config: MistralConfig,
use_sparse_model=False,
use_sparse_predictor=False,
use_sparse_regularization=False,
thresholds=None,
):
new_config = SparseMistralConfig()
new_config.__dict__.update(config.__dict__)
config = new_config
config.use_sparse_model = use_sparse_model
config.use_sparse_predictor = use_sparse_predictor
config.use_sparse_regularization = use_sparse_regularization
config.thresholds = thresholds
return config
def apply_mistral_sparse_silu_mlp(
model,
config,
use_sparse_regularization: bool = False,
):
# counts = 0
for layer in model.model.layers:
# counts += 1
# if counts < 4:
# continue
original_mlp = layer.mlp
new_mlp = MistralSparseSiluMLP(
config, use_sparse_regularization=use_sparse_regularization
)
new_mlp.gate_proj = original_mlp.gate_proj
new_mlp.up_proj = original_mlp.up_proj
new_mlp.down_proj = original_mlp.down_proj
layer.mlp = new_mlp
def apply_mistral_sparse_decoder_layer(
model,
config,
init_svd: bool = True,
):
assert isinstance(model.model, MistralModel), "model.model must be a MistralModel."
new_layers = []
for layer_idx, layer in enumerate(model.model.layers):
if isinstance(layer.mlp, MistralSparseSiluMLP):
new_layers.append(
SparseMistralDecoderLayer(
config=config,
layer_idx=layer_idx,
decoder_layer=layer,
init_svd=init_svd,
)
)
print(f"{layer_idx}th mlp layer activation: {layer.mlp.sparse_act_fn}")
else:
new_layers.append(layer)
model.model.layers = nn.ModuleList(new_layers)
def enable_sparse_predictor(
model,
):
for layer_idx, layer in enumerate(model.model.layers):
if isinstance(layer, MistralDecoderLayer):
layer.use_sparse_predictor = True
def disable_sparse_predictor(
model,
):
for layer_idx, layer in enumerate(model.model.layers):
if isinstance(layer, MistralDecoderLayer):
layer.use_sparse_predictor = False
def activate_stats(model, is_collect_histogram: bool = True):
for layer in model.model.layers:
if isinstance(layer.mlp, MistralSparseSiluMLP):
layer.mlp.activate_stats(is_collect_histogram=is_collect_histogram)
def deactivate_stats(model):
for layer in model.model.layers:
if isinstance(layer.mlp, MistralSparseSiluMLP):
layer.mlp.deactivate_stats()
def enable_sparse_silu(model):
print("Enabling SparseSilu")
for i, layer in enumerate(model.model.layers):
if isinstance(layer.mlp, MistralSparseSiluMLP):
layer.mlp.kill_sparse_swish_outputs = True
def print_dead_neuron_stats(model):
total_sparsity = 0
counts = 0
for i, layer in enumerate(model.model.layers):
if isinstance(layer.mlp, MistralSparseSiluMLP):
dead_percentage = layer.mlp.dead_percentage * 100
agg_sparsity = layer.mlp.agg_sparsity * 100
print(f"layer {i} sparsity: {dead_percentage:.3f}%")
print(f"layer {i} agg sparsity: {agg_sparsity:.3f}%")
total_sparsity += dead_percentage
counts += 1
print(f"Total sparsity: {total_sparsity/counts: .3f}%")
return total_sparsity / counts
def get_sparse_layers(model: MistralModel):
sparse_layers = [
m.mlp for m in model.layers() if isinstance(m.mlp, MistralSparseSiluMLP)
]
return sparse_layers
def get_threshold(
bin_edges: torch.tensor, histogram_counts: torch.tensor, sparsity_level: float
): # Only for L1 Regularization
assert (
len(bin_edges.shape) == len(histogram_counts.shape) == 1
), "bin_edges and histogram are expected to be 1-dimensional."
histogram_counts /= histogram_counts.sum()
threshold_idx = torch.searchsorted(
histogram_counts.cumsum(0), sparsity_level, side="right"
)
return bin_edges[threshold_idx]
def set_regularization_threshold(model, threshold: float = 0.1):
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
layer.mlp.regularization_threshold = threshold # TODO: find better param
def set_sparse_threshold(model, sparsity_level: float, use_relu: bool = False):
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
if use_relu:
layer.mlp.sparse_act_fn = nn.ReLU()
layer.mlp.use_relu = True
else:
layer.mlp.dead_threshold = get_threshold(
layer.mlp.histogram_bins,
layer.mlp.post_act_hist_counts,
sparsity_level,
)
layer.mlp.sparse_act_fn.set_new_threshold(layer.mlp.dead_threshold)
layer.mlp.regularization_threshold = (
layer.mlp.dead_threshold * 1.2
) # TODO: find better param
def plot_histogram(
bin_edges, histogram_counts: torch.tensor, title: str = "Activation Distribution", fig_dir: str = "figures"
):
plt.bar(
bin_edges[:-1], histogram_counts, width=np.diff(bin_edges), edgecolor="black"
)
plt.title(title)
plt.xlabel("Activation Value")
plt.ylabel("Frequency")
os.makedirs(fig_dir, exist_ok=True)
plt.savefig(f"{fig_dir}/{title}.png")
# plt.show()
plt.clf()
def plot_act(model, fig_dir: str = "figures"):
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
plot_title = f"Layer: {i} Pre-Activation Distribution"
plot_histogram(
layer.mlp.histogram_bins, layer.mlp.pre_act_hist_counts, plot_title
)
plot_title = f"Layer: {i} Post-Activation Absolute Distribution"
plot_histogram(
layer.mlp.histogram_bins, layer.mlp.post_act_hist_counts, plot_title
)
def save_act_hist(
model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
):
os.makedirs(os.path.dirname(filename), exist_ok=True)
act_dict = {}
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
act_dict[i] = (
layer.mlp.histogram_bins,
layer.mlp.pre_act_hist_counts,
layer.mlp.post_act_hist_counts,
)
print("Saving activation histograms...\n\n\n")
torch.save(act_dict, filename)
def load_act_hist(
model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
):
assert os.path.exists(
filename
), f"{filename} does not exist when loading pre/post-activation histogram of SparseMistralSiluMLP."
print("Loading activation histograms...\n\n\n")
act_dict = torch.load(filename)
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
(
layer.mlp.histogram_bins,
layer.mlp.pre_act_hist_counts,
layer.mlp.post_act_hist_counts,
) = act_dict[i]
def enable_last_k_modules(model, start_module_idx: int):
assert 32 > start_module_idx >= 0
new_modules = []
new_idx = 0
for idx in range(start_module_idx, len(model.model.original_layers)):
module = model.model.original_layers[idx]
module.layer_idx = new_idx
module.self_attn.layer_idx = new_idx
new_modules.append(module)
new_idx += 1
print(module.layer_idx)
model.model.layers = nn.ModuleList(new_modules)
def enable_first_k_modules(model, end_module_idx: int):
assert 32 > end_module_idx >= 0
new_modules = []
new_idx = 0
for idx in range(0, end_module_idx + 1):
module = model.model.original_layers[idx]
module.layer_idx = new_idx
module.self_attn.layer_idx = new_idx
new_modules.append(module)
new_idx += 1
print(module.layer_idx)
model.model.layers = nn.ModuleList(new_modules)