File size: 35,216 Bytes
980fdf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
from transformers import TrainerCallback, Trainer
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from peft import PeftModel
from datasets import Dataset
from transformers.utils import is_sagemaker_mp_enabled, is_sagemaker_dp_enabled
from typing import Any, Dict, Union, Optional, Tuple
from torch.nn import MSELoss
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
import time
import os
import copy
from transformers.models.mistral.modeling_mistral import (
MistralMLP,
MistralAttention,
MistralModel,
MistralDecoderLayer,
MistralConfig,
MISTRAL_ATTENTION_CLASSES,
MistralRMSNorm,
MistralForCausalLM,
)
from experiments.models.sparse_mistral.svd_router import (
low_rank_approximation,
SparsePredictor,
)
from utils.utils import (
print_size_of_model,
is_running_deepspeed,
is_mainprocess,
get_datetime,
ds_print,
)
class SparseSFTTTrainer(SFTTrainer):
def __init__(self, *args, **kwargs):
self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
self.use_spm_loss = False
self.freeze_original_weights = False
self.regularization_type = kwargs.pop(
"regularization_type", "L1 positive activation"
)
assert self.regularization_type in [
"L2 activation",
"L1 positive activation",
], f"Invalid regularization type: {self.regularization_type}"
self.sparse_layers = []
self.sparse_decoder_layers = []
super(SparseSFTTTrainer, self).__init__(*args, **kwargs)
def initialize_sparse_silu_layers(self, model):
self.sparse_layers = [
m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
]
def initialize_sparse_decoder_layers(self, model):
self.sparse_decoder_layers = [
m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
]
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
"""
Override the huggingface's training_step function to add a regularization term.
A regularization term is computed with intermediate values, which are freed after "backward()."
You need to set `retain_graph=True` inside `backward` function to keep the values.
"""
model.train()
inputs = self._prepare_inputs(inputs)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if not self.freeze_original_weights:
if loss is not None:
self.accelerator.backward(loss, retain_graph=False)
if self.use_sparse_regularization:
regularization_loss = self.compute_regularization(model)
if self.args.n_gpu > 1:
regularization_loss = regularization_loss.mean()
if regularization_loss is not None:
self.accelerator.backward(regularization_loss, retain_graph=True)
loss += regularization_loss
if self.use_spm_loss:
spm_loss = self.compute_spm_loss(model)
if self.args.n_gpu > 1:
spm_loss = spm_loss.mean()
if spm_loss is not None:
self.accelerator.backward(spm_loss, retain_graph=False)
loss += spm_loss
return loss.detach() / self.args.gradient_accumulation_steps
def compute_regularization(self, model):
"""
Compute a sparse regularization loss for SiLU
"""
loss = 0
if len(self.sparse_layers) == 0:
self.initialize_sparse_silu_layers(model)
num_layers = len(self.sparse_layers)
for module in self.sparse_layers:
if module.activation_norm is not None:
loss += module.activation_norm
loss /= num_layers
loss *= self.regularization_coefficient
if self.state.global_step % 20 == 0 and loss != 0:
print("Negative relularizer loss: ", loss.item())
return loss
def compute_spm_loss(self, model):
loss = 0
if len(self.sparse_decoder_layers) == 0:
self.initialize_sparse_decoder_layers(model)
for module in self.sparse_decoder_layers:
if module.distill_loss != None:
loss += module.distill_loss
if self.state.global_step % 20 == 0 and loss != 0:
print("Sparse Predictor Distillation loss: ", loss.item())
return loss
# def compute_loss(self, model, inputs, return_outputs=False):
# loss = super().compute_loss(model, inputs, return_outputs)
#
# if is_sagemaker_mp_enabled():
# import smdistributed.modelparallel.torch as smp
# @smp.step()
# def smp_forward_backward(model, inputs, gradient_accumulation_steps=1):
# outputs = model(**inputs)
# loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
# loss /= gradient_accumulation_steps
# model.backward(loss)
# return loss
#
# loss_mb = smp_forward_backward(
# model, inputs, self.args.gradient_accumulation_steps
# )
# if self.use_sparse_regularization:
# return loss_mb.reduce_mean().detach().to(
# self.args.device
# ) + self.regularization_coefficient * self.compute_regularization(model)
# else:
# return loss_mb.reduce_mean().detach().to(self)
#
# if return_outputs:
# classification_loss, outputs = loss
# else:
# classification_loss = loss
#
# loss = classification_loss
# if self.use_sparse_regularization:
# regularization_loss = self.compute_regularization(model)
# loss += self.regularization_coefficient * regularization_loss
#
# return (loss, outputs) if return_outputs else loss
class SparseTrainer(Trainer):
def __init__(self, *args, **kwargs):
self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
self.use_spm_loss = False
self.freeze_original_weights = False
self.regularization_type = kwargs.pop(
"regularization_type", "L1 positive activation"
)
assert self.regularization_type in [
"L2 activation",
"L1 positive activation",
], f"Invalid regularization type: {self.regularization_type}"
self.sparse_layers = []
self.sparse_decoder_layers = []
super(SparseTrainer, self).__init__(*args, **kwargs)
def initialize_sparse_silu_layers(self, model):
self.sparse_layers = [
m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
]
def initialize_sparse_decoder_layers(self, model):
self.sparse_decoder_layers = [
m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
]
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
"""
Override the huggingface's training_step function to add a regularization term.
A regularization term is computed with intermediate values, which are freed after "backward()."
You need to set `retain_graph=True` inside `backward` function to keep the values.
"""
model.train()
inputs = self._prepare_inputs(inputs)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if not self.freeze_original_weights:
if loss is not None:
self.accelerator.backward(loss, retain_graph=False)
if self.use_sparse_regularization:
regularization_loss = self.compute_regularization(model)
if self.args.n_gpu > 1:
regularization_loss = regularization_loss.mean()
if regularization_loss is not None:
self.accelerator.backward(regularization_loss, retain_graph=True)
loss += regularization_loss
if self.use_spm_loss:
spm_loss = self.compute_spm_loss(model)
if self.args.n_gpu > 1:
spm_loss = spm_loss.mean()
if spm_loss is not None:
self.accelerator.backward(spm_loss, retain_graph=False)
loss += spm_loss
return loss.detach() / self.args.gradient_accumulation_steps
def compute_regularization(self, model):
"""
Compute a sparse regularization loss for SiLU
"""
loss = 0
if len(self.sparse_layers) == 0:
self.initialize_sparse_silu_layers(model)
num_layers = len(self.sparse_layers)
for module in self.sparse_layers:
if module.activation_norm is not None:
loss += module.activation_norm
loss /= num_layers
loss *= self.regularization_coefficient
if self.state.global_step % 20 == 0 and loss != 0:
print("Negative relularizer loss: ", loss.item())
return loss
def compute_spm_loss(self, model):
loss = 0
if len(self.sparse_decoder_layers) == 0:
self.initialize_sparse_decoder_layers(model)
for module in self.sparse_decoder_layers:
if module.distill_loss != None:
loss += module.distill_loss
if self.state.global_step % 20 == 0 and loss != 0:
print("Sparse Predictor Distillation loss: ", loss.item())
return loss
class SparseSiLU(nn.SiLU):
def __init__(self, threshold):
super(SparseSiLU, self).__init__()
self.threshold = threshold
self.m = nn.Threshold(self.threshold, 0)
def set_new_threshold(self, threshold):
self.threshold = threshold
self.m = nn.Threshold(threshold, 0)
def forward(self, x):
act = super(SparseSiLU, self).forward(x)
return self.m(act) - self.m(-act)
class MistralSparseSiluMLP(MistralMLP):
def __init__(self, config, *args, **kwargs):
super().__init__(config)
self.swish_outputs = None
self.relu = nn.ReLU()
self.kill_sparse_swish_outputs = False
self.dead_percentage = 0
self.is_stats = False
self.visit_counts = 0
# Hyperparameters to tune
self.dead_threshold = kwargs.pop("dead_threshold", 0)
self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", True)
self.regularization_type = kwargs.pop(
"regularization_type", "L1 regularization"
)
self.regularization_threshold = kwargs.pop("regularization_threshold", 0.5)
self.use_relu = kwargs.pop("use_relu", False)
self.activation_norm = None
# Activation Histograms
self.is_collect_histogram = False
num_bins = 1000
self.histogram_bins = torch.linspace(-1, 1, num_bins - 2)
self.histogram_bins = torch.cat(
[torch.tensor([-torch.inf]), self.histogram_bins, torch.tensor([torch.inf])]
)
self.pre_act_hist_counts = torch.zeros(num_bins - 1)
self.post_act_hist_counts = torch.zeros(num_bins - 1)
self.t = 0
self.agg_sparsity = 0
# Sparse activation function
self.sparse_act_fn = SparseSiLU(threshold=self.dead_threshold)
def activate_stats(self, is_collect_histogram: bool = True):
self.is_stats = True
self.dead_percentage = 0
self.visit_counts = 0
self.is_collect_histogram = is_collect_histogram
self.histogram_counts = torch.zeros(2000) # .to(self.down_proj.weight.device)
def deactivate_stats(self):
self.is_stats = False
def collect_stats(self, pre_activation, post_activation):
start_time = time.time()
pre_activation = pre_activation.float().cpu().detach()
post_activation = post_activation.float().cpu().detach()
# self.histogram_bins=self.histogram_bins.to(pre_activation.device).type(pre_activation.dtype)
self.pre_act_hist_counts += torch.histogram(
pre_activation, bins=self.histogram_bins
)[0]
self.post_act_hist_counts += torch.histogram(
torch.abs(post_activation), bins=self.histogram_bins
)[0]
self.t += time.time() - start_time
if self.visit_counts % 30 == 0:
print(f"Time taken to collect stats: {self.t}s.")
def forward(
self,
x,
sp_mask: torch.tensor = None,
):
"""
If kill_sparse_swish_outputs is set to False, this layer functions exactly like a normal MLP layer.
"""
if sp_mask != None: # When sparse mask is given
return self.down_proj(
self.sparse_act_fn(self.gate_proj(x) * sp_mask) * self.up_proj(x)
) # Todo: This doesn't accelerate runtime (instead slowing down)
elif self.use_relu:
post_act = self.relu(self.gate_proj(x))
if self.is_stats:
dead_neurons = post_act == 0
dead_percentage = dead_neurons.float().mean()
agg_sparsity = dead_neurons.all(dim=0).float().mean()
self.dead_percentage = (
self.dead_percentage * self.visit_counts + dead_percentage
) / (self.visit_counts + 1)
self.agg_sparsity = (
self.agg_sparsity * self.visit_counts + agg_sparsity
) / (self.visit_counts + 1)
self.visit_counts += 1
return self.down_proj(post_act * self.up_proj(x))
else:
pre_act = self.gate_proj(x)
post_act = self.act_fn(pre_act)
if self.kill_sparse_swish_outputs:
dead_neurons = post_act.abs() <= self.dead_threshold
dead_percentage = dead_neurons.float().mean()
agg_sparsity = dead_neurons.all(dim=0).float().mean()
if self.is_stats:
self.dead_percentage = (
self.dead_percentage * self.visit_counts + dead_percentage
) / (self.visit_counts + 1)
self.agg_sparsity = (
self.agg_sparsity * self.visit_counts + agg_sparsity
) / (self.visit_counts + 1)
self.visit_counts += 1
# print(self.agg_sparsity)
# Collect histogram stats
if (
self.is_collect_histogram
and pre_act.eq(0).float().mean() < 0.99
): # Padded dataset
self.collect_stats(pre_act, post_act)
post_act[dead_neurons] = 0
out = self.down_proj(post_act * self.up_proj(x))
if self.use_sparse_regularization:
if self.regularization_type == "L1 regularization":
self.activation_norm = torch.abs(post_act)[
post_act < self.regularization_threshold
].mean()
elif self.regularization_type == "L2 regularization":
self.activation_norm = torch.sqrt(
torch.square(post_act)[post_act < self.regularization_threshold]
).mean()
return out
class SparseMistralDecoderLayer(MistralDecoderLayer):
def __init__(
self,
config: MistralConfig,
layer_idx: int,
decoder_layer: MistralDecoderLayer,
init_svd: bool = True,
*args,
**kwargs,
):
assert isinstance(
decoder_layer.mlp, MistralSparseSiluMLP
), f"{type(decoder_layer.mlp)} should MistralSparseSiluMLP."
super().__init__(config, layer_idx)
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.init_svd = init_svd
self.self_attn = decoder_layer.self_attn
self.mlp = decoder_layer.mlp
self.input_layernorm = decoder_layer.input_layernorm
self.post_attention_layernorm = decoder_layer.post_attention_layernorm
# Sparse predictor for mlp (initialized with SVD decomposed matrix)
self.low_rank = kwargs.pop("low_rank", 64)
self.sparse_act_func = decoder_layer.mlp.sparse_act_fn
print(
f"Setting {layer_idx}th mlp layer's sparse predictor... svd init: {init_svd}"
)
self.sp_mlp = low_rank_approximation(
decoder_layer.mlp.gate_proj,
act_func=self.sparse_act_func,
init_svd=init_svd,
)
self.use_async = kwargs.pop("use_async", False)
self.use_sparse_predictor = False
self.distill_loss = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
print("hidden_states shape: ", hidden_states.shape)
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
sp_mask = None
if self.use_async:
sp_mask = self.sp_mlp(hidden_states)
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
if not self.use_async:
sp_mask = self.sp_mlp(hidden_states)
# Compute distillation loss
gating_output = self.mlp.sparse_act_fn(self.mlp.gate_proj(hidden_states))
loss_func = MSELoss()
self.distill_loss = loss_func(sp_mask, gating_output)
# Convert sp mask into binary form
sp_mask = sp_mask > 0
if self.training:
sp_mask = None
# if not self.use_sparse_predictor:
# sp_mask = None
hidden_states = self.mlp(hidden_states, sp_mask)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class SparseMistralConfig(MistralConfig):
model_type = "sparse_mistral"
def __init__(self, **kwargs):
super().__init__(**kwargs)
class SparseMistralforCausalLM(MistralForCausalLM):
config_class = SparseMistralConfig
def __init__(self, config):
super().__init__(config)
self.config = config
if config.use_sparse_model:
self.apply_sparse_mlp()
if config.thresholds is not None:
for idx, m in enumerate(self.model.layers):
if isinstance(m.mlp, MistralSparseSiluMLP):
m.mlp.dead_threshold = config.thresholds[idx]
m.mlp.sparse_act_fn.set_new_threshold(m.mlp.dead_threshold)
m.mlp.kill_sparse_swish_outputs = True
m.mlp.use_relu = config.use_relu
if config.use_sparse_predictor:
self.apply_sparse_predictor(init_svd=config.init_svd)
def apply_sparse_mlp(self):
apply_mistral_sparse_silu_mlp(
self,
config=self.config,
use_sparse_regularization=self.config.use_sparse_regularization,
)
def apply_sparse_predictor(self, init_svd: bool = True):
apply_mistral_sparse_decoder_layer(self, config=self.config, init_svd=init_svd)
class GracefulRegularizationScheduler(TrainerCallback):
def __init__(
self,
num_warmup_steps=40,
is_enabled: bool = False,
model_name: str = "mistral",
test_dataset: Dataset = None,
targeted_sparsity: float = 0.5,
keep_regularization_with_kill: bool = False,
):
"""Scheduler for regularizing the model first before applying the dead threshold.
:param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
:param increment_ratio: by how much to increase the dead threshold.
For example, 0.5 means "increase the threshold by 0.5 * desired threshold
"""
self.num_warmup_steps = num_warmup_steps
self.is_enabled = is_enabled
self.model_name = model_name
self.test_dataset = test_dataset
self.targeted_sparsity = targeted_sparsity
self.keep_regularization_with_kill = keep_regularization_with_kill
self.act_hist_path = (
f"/matx/u/vxbrando/histograms/warm_up_reg_{targeted_sparsity}/act_hist.pt"
)
if self.is_enabled:
print("GracefulRegularizationScheduler is enabled.")
self.trainer = None
def set_trainer(self, trainer):
self.trainer = trainer
def on_step_end(self, args, state, control, **kwargs):
if not self.is_enabled:
return
model = kwargs["model"]
if isinstance(model, PeftModel):
base_model = model.get_base_model()
else:
base_model = model
if state.global_step == 1:
ds_print("Setting an initial reg threshold to 0.1")
set_regularization_threshold(base_model, 0.1)
# if state.global_step >= self.num_warmup_steps and state.global_step % 50 == 0:
if state.global_step == self.num_warmup_steps:
activate_stats(base_model)
enable_sparse_silu(base_model)
self.trainer.evaluate()
save_act_hist(base_model, self.act_hist_path)
set_sparse_threshold(base_model, self.targeted_sparsity, True)
deactivate_stats(base_model)
self.trainer.use_sparse_regularization = self.keep_regularization_with_kill
# set_layer_specific_regularization(model.get_base_model())
print_dead_neuron_stats(model.get_base_model())
if state.global_step % 2000 == 0:
if is_mainprocess():
ds_print(
f"Saving to /scr/lukeai/{self.model_name}_{state.global_step}.pt",
)
torch.save(
model.state_dict(),
f"/scr/lukeai/{self.model_name}_{state.global_step}.pt",
)
class GradualSparsificationScheduler(TrainerCallback):
def __init__(
self,
num_warmup_steps=40,
increment_ratio=0.5,
is_enabled: bool = False,
model_name: str = "mistral",
):
"""Scheduler for gradually increasing a dead threshold until it reaches the desired threshold.
:param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
:param increment_ratio: by how much to increase the dead threshold.
For example, 0.5 means "increase the threshold by 0.5 * desired threshold
"""
self.num_warmup_steps = num_warmup_steps
self.increment_ratio = increment_ratio
self.step_size = int(num_warmup_steps * increment_ratio)
self.is_enabled = is_enabled
self.model_name = model_name
def on_step_end(self, args, state, control, **kwargs):
model = kwargs["model"]
if not self.is_enabled:
if state.global_step <= 10:
for module in model.modules():
if isinstance(module, MistralSparseSiluMLP):
module.current_dead_threshold = module.dead_threshold
return
current_dead_threshold = 0
desired_dead_threshold = 0
if is_mainprocess():
ds_print(state.global_step)
if state.global_step % self.step_size == 2:
for module in model.modules():
if isinstance(module, MistralSparseSiluMLP):
desired_dead_threshold = copy.deepcopy(module.dead_threshold)
current_dead_threshold = module.current_dead_threshold
current_dead_threshold += (
self.increment_ratio * desired_dead_threshold
)
module.current_dead_threshold = min(
desired_dead_threshold, current_dead_threshold
)
if is_running_deepspeed and is_mainprocess():
ds_print(
state.global_step,
current_dead_threshold,
desired_dead_threshold,
)
if state.global_step % 2000 == 0:
if is_running_deepspeed and is_mainprocess():
ds_print(
f"Saving to /matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
)
torch.save(
model.state_dict(),
f"/matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
)
def get_sparse_mistral_config(
config: MistralConfig,
use_sparse_model=False,
use_sparse_predictor=False,
use_sparse_regularization=False,
thresholds=None,
):
new_config = SparseMistralConfig()
new_config.__dict__.update(config.__dict__)
config = new_config
config.use_sparse_model = use_sparse_model
config.use_sparse_predictor = use_sparse_predictor
config.use_sparse_regularization = use_sparse_regularization
config.thresholds = thresholds
return config
def apply_mistral_sparse_silu_mlp(
model,
config,
use_sparse_regularization: bool = False,
):
# counts = 0
for layer in model.model.layers:
# counts += 1
# if counts < 4:
# continue
original_mlp = layer.mlp
new_mlp = MistralSparseSiluMLP(
config, use_sparse_regularization=use_sparse_regularization
)
new_mlp.gate_proj = original_mlp.gate_proj
new_mlp.up_proj = original_mlp.up_proj
new_mlp.down_proj = original_mlp.down_proj
layer.mlp = new_mlp
def apply_mistral_sparse_decoder_layer(
model,
config,
init_svd: bool = True,
):
assert isinstance(model.model, MistralModel), "model.model must be a MistralModel."
new_layers = []
for layer_idx, layer in enumerate(model.model.layers):
if isinstance(layer.mlp, MistralSparseSiluMLP):
new_layers.append(
SparseMistralDecoderLayer(
config=config,
layer_idx=layer_idx,
decoder_layer=layer,
init_svd=init_svd,
)
)
print(f"{layer_idx}th mlp layer activation: {layer.mlp.sparse_act_fn}")
else:
new_layers.append(layer)
model.model.layers = nn.ModuleList(new_layers)
def enable_sparse_predictor(
model,
):
for layer_idx, layer in enumerate(model.model.layers):
if isinstance(layer, MistralDecoderLayer):
layer.use_sparse_predictor = True
def disable_sparse_predictor(
model,
):
for layer_idx, layer in enumerate(model.model.layers):
if isinstance(layer, MistralDecoderLayer):
layer.use_sparse_predictor = False
def activate_stats(model, is_collect_histogram: bool = True):
for layer in model.model.layers:
if isinstance(layer.mlp, MistralSparseSiluMLP):
layer.mlp.activate_stats(is_collect_histogram=is_collect_histogram)
def deactivate_stats(model):
for layer in model.model.layers:
if isinstance(layer.mlp, MistralSparseSiluMLP):
layer.mlp.deactivate_stats()
def enable_sparse_silu(model):
print("Enabling SparseSilu")
for i, layer in enumerate(model.model.layers):
if isinstance(layer.mlp, MistralSparseSiluMLP):
layer.mlp.kill_sparse_swish_outputs = True
def print_dead_neuron_stats(model):
total_sparsity = 0
counts = 0
for i, layer in enumerate(model.model.layers):
if isinstance(layer.mlp, MistralSparseSiluMLP):
dead_percentage = layer.mlp.dead_percentage * 100
agg_sparsity = layer.mlp.agg_sparsity * 100
print(f"layer {i} sparsity: {dead_percentage:.3f}%")
print(f"layer {i} agg sparsity: {agg_sparsity:.3f}%")
total_sparsity += dead_percentage
counts += 1
print(f"Total sparsity: {total_sparsity/counts: .3f}%")
return total_sparsity / counts
def get_sparse_layers(model: MistralModel):
sparse_layers = [
m.mlp for m in model.layers() if isinstance(m.mlp, MistralSparseSiluMLP)
]
return sparse_layers
def get_threshold(
bin_edges: torch.tensor, histogram_counts: torch.tensor, sparsity_level: float
): # Only for L1 Regularization
assert (
len(bin_edges.shape) == len(histogram_counts.shape) == 1
), "bin_edges and histogram are expected to be 1-dimensional."
histogram_counts /= histogram_counts.sum()
threshold_idx = torch.searchsorted(
histogram_counts.cumsum(0), sparsity_level, side="right"
)
return bin_edges[threshold_idx]
def set_regularization_threshold(model, threshold: float = 0.1):
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
layer.mlp.regularization_threshold = threshold # TODO: find better param
def set_sparse_threshold(model, sparsity_level: float, use_relu: bool = False):
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
if use_relu:
layer.mlp.sparse_act_fn = nn.ReLU()
layer.mlp.use_relu = True
else:
layer.mlp.dead_threshold = get_threshold(
layer.mlp.histogram_bins,
layer.mlp.post_act_hist_counts,
sparsity_level,
)
layer.mlp.sparse_act_fn.set_new_threshold(layer.mlp.dead_threshold)
layer.mlp.regularization_threshold = (
layer.mlp.dead_threshold * 1.2
) # TODO: find better param
def plot_histogram(
bin_edges, histogram_counts: torch.tensor, title: str = "Activation Distribution", fig_dir: str = "figures"
):
plt.bar(
bin_edges[:-1], histogram_counts, width=np.diff(bin_edges), edgecolor="black"
)
plt.title(title)
plt.xlabel("Activation Value")
plt.ylabel("Frequency")
os.makedirs(fig_dir, exist_ok=True)
plt.savefig(f"{fig_dir}/{title}.png")
# plt.show()
plt.clf()
def plot_act(model, fig_dir: str = "figures"):
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
plot_title = f"Layer: {i} Pre-Activation Distribution"
plot_histogram(
layer.mlp.histogram_bins, layer.mlp.pre_act_hist_counts, plot_title
)
plot_title = f"Layer: {i} Post-Activation Absolute Distribution"
plot_histogram(
layer.mlp.histogram_bins, layer.mlp.post_act_hist_counts, plot_title
)
def save_act_hist(
model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
):
os.makedirs(os.path.dirname(filename), exist_ok=True)
act_dict = {}
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
act_dict[i] = (
layer.mlp.histogram_bins,
layer.mlp.pre_act_hist_counts,
layer.mlp.post_act_hist_counts,
)
print("Saving activation histograms...\n\n\n")
torch.save(act_dict, filename)
def load_act_hist(
model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
):
assert os.path.exists(
filename
), f"{filename} does not exist when loading pre/post-activation histogram of SparseMistralSiluMLP."
print("Loading activation histograms...\n\n\n")
act_dict = torch.load(filename)
for i, layer in enumerate(model.model.layers):
if (
isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
): # Can set the threshold only the relevant statistics is collected.
(
layer.mlp.histogram_bins,
layer.mlp.pre_act_hist_counts,
layer.mlp.post_act_hist_counts,
) = act_dict[i]
def enable_last_k_modules(model, start_module_idx: int):
assert 32 > start_module_idx >= 0
new_modules = []
new_idx = 0
for idx in range(start_module_idx, len(model.model.original_layers)):
module = model.model.original_layers[idx]
module.layer_idx = new_idx
module.self_attn.layer_idx = new_idx
new_modules.append(module)
new_idx += 1
print(module.layer_idx)
model.model.layers = nn.ModuleList(new_modules)
def enable_first_k_modules(model, end_module_idx: int):
assert 32 > end_module_idx >= 0
new_modules = []
new_idx = 0
for idx in range(0, end_module_idx + 1):
module = model.model.original_layers[idx]
module.layer_idx = new_idx
module.self_attn.layer_idx = new_idx
new_modules.append(module)
new_idx += 1
print(module.layer_idx)
model.model.layers = nn.ModuleList(new_modules)
|