vxbrandon's picture
End of training
48ccbd8 verified
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: Mistral_Sparse_refined_web_90p_2024-02-16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral_Sparse_refined_web_90p_2024-02-16
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3570
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 8.7348 | 0.0 | 25 | 8.3850 |
| 5.9261 | 0.01 | 50 | 5.5212 |
| 3.6159 | 0.01 | 75 | 3.6689 |
| 3.0291 | 0.02 | 100 | 3.1644 |
| 2.786 | 0.02 | 125 | 2.9872 |
| 2.7951 | 0.02 | 150 | 2.9148 |
| 2.6959 | 0.03 | 175 | 2.8528 |
| 2.6134 | 0.03 | 200 | 2.8111 |
| 2.6439 | 0.04 | 225 | 2.7811 |
| 2.6326 | 0.04 | 250 | 2.7534 |
| 2.5528 | 0.04 | 275 | 2.7384 |
| 2.5601 | 0.05 | 300 | 2.7239 |
| 2.5693 | 0.05 | 325 | 2.7181 |
| 2.3934 | 0.06 | 350 | 2.7019 |
| 2.5466 | 0.06 | 375 | 2.6918 |
| 2.5872 | 0.06 | 400 | 2.6840 |
| 2.5638 | 0.07 | 425 | 2.6768 |
| 2.5235 | 0.07 | 450 | 2.6671 |
| 2.4179 | 0.08 | 475 | 2.6622 |
| 2.4862 | 0.08 | 500 | 2.6619 |
| 2.5594 | 0.08 | 525 | 2.6584 |
| 2.4604 | 0.09 | 550 | 2.6564 |
| 2.5887 | 0.09 | 575 | 2.6493 |
| 2.3974 | 0.1 | 600 | 2.6447 |
| 2.4769 | 0.1 | 625 | 2.6457 |
| 2.53 | 0.1 | 650 | 2.6317 |
| 2.5403 | 0.11 | 675 | 2.6341 |
| 2.4764 | 0.11 | 700 | 2.6296 |
| 2.489 | 0.12 | 725 | 2.6268 |
| 2.3969 | 0.12 | 750 | 2.6288 |
| 2.4164 | 0.12 | 775 | 2.6264 |
| 2.5208 | 0.13 | 800 | 2.6227 |
| 2.4997 | 0.13 | 825 | 2.6190 |
| 2.4853 | 0.14 | 850 | 2.6200 |
| 2.3447 | 0.14 | 875 | 2.6091 |
| 2.4384 | 0.14 | 900 | 2.6132 |
| 2.3863 | 0.15 | 925 | 2.6152 |
| 2.5076 | 0.15 | 950 | 2.6114 |
| 2.4299 | 0.16 | 975 | 2.6144 |
| 2.478 | 0.16 | 1000 | 2.6109 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0