End of training
Browse files- README.md +77 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- matthews_correlation
|
9 |
+
model-index:
|
10 |
+
- name: Mistral-7B-v0.1_cola_sparse_swiglu_scratch
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Mistral-7B-v0.1_cola_sparse_swiglu_scratch
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3823
|
22 |
+
- Accuracy: {'accuracy': 0.8621495327102804}
|
23 |
+
- Matthews Correlation: 0.6666
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 1e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 2
|
46 |
+
- distributed_type: multi-GPU
|
47 |
+
- num_devices: 6
|
48 |
+
- gradient_accumulation_steps: 2
|
49 |
+
- total_train_batch_size: 96
|
50 |
+
- total_eval_batch_size: 96
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 40
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------:|
|
59 |
+
| 1.0186 | 0.31 | 25 | 0.8870 | {'accuracy': 0.7152444870565676} | 0.2813 |
|
60 |
+
| 0.7573 | 0.62 | 50 | 0.6207 | {'accuracy': 0.788111217641419} | 0.4870 |
|
61 |
+
| 0.5186 | 0.93 | 75 | 0.5819 | {'accuracy': 0.7986577181208053} | 0.4984 |
|
62 |
+
| 0.4259 | 1.24 | 100 | 0.5096 | {'accuracy': 0.8149568552253116} | 0.5459 |
|
63 |
+
| 0.5015 | 1.55 | 125 | 0.4887 | {'accuracy': 0.8302972195589645} | 0.6063 |
|
64 |
+
| 0.4622 | 1.86 | 150 | 0.4573 | {'accuracy': 0.8437200383509108} | 0.6273 |
|
65 |
+
| 0.3411 | 2.17 | 175 | 0.4755 | {'accuracy': 0.835091083413231} | 0.5958 |
|
66 |
+
| 0.3637 | 2.48 | 200 | 0.4302 | {'accuracy': 0.8341323106423778} | 0.5941 |
|
67 |
+
| 0.3376 | 2.8 | 225 | 0.3974 | {'accuracy': 0.8446788111217641} | 0.6325 |
|
68 |
+
| 0.2879 | 3.11 | 250 | 0.5189 | {'accuracy': 0.8130393096836049} | 0.6287 |
|
69 |
+
| 0.2691 | 3.42 | 275 | 0.4033 | {'accuracy': 0.8331735378715245} | 0.6148 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.35.2
|
75 |
+
- Pytorch 2.1.1+cu121
|
76 |
+
- Datasets 2.15.0
|
77 |
+
- Tokenizers 0.15.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 51414576
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d2891edf846efb35b8544a2946031fe26e9648ccaeec8b514dad22286b7621c
|
3 |
size 51414576
|