Mistral-7B-v0.1_cola_sparse_swiglu_scratch

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3823
  • Accuracy: {'accuracy': 0.8621495327102804}
  • Matthews Correlation: 0.6666

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 2
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 96
  • total_eval_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy Matthews Correlation
1.0186 0.31 25 0.8870 {'accuracy': 0.7152444870565676} 0.2813
0.7573 0.62 50 0.6207 {'accuracy': 0.788111217641419} 0.4870
0.5186 0.93 75 0.5819 {'accuracy': 0.7986577181208053} 0.4984
0.4259 1.24 100 0.5096 {'accuracy': 0.8149568552253116} 0.5459
0.5015 1.55 125 0.4887 {'accuracy': 0.8302972195589645} 0.6063
0.4622 1.86 150 0.4573 {'accuracy': 0.8437200383509108} 0.6273
0.3411 2.17 175 0.4755 {'accuracy': 0.835091083413231} 0.5958
0.3637 2.48 200 0.4302 {'accuracy': 0.8341323106423778} 0.5941
0.3376 2.8 225 0.3974 {'accuracy': 0.8446788111217641} 0.6325
0.2879 3.11 250 0.5189 {'accuracy': 0.8130393096836049} 0.6287
0.2691 3.42 275 0.4033 {'accuracy': 0.8331735378715245} 0.6148

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for thrunlab/Mistral-7B-v0.1_cola_sparse_swiglu_scratch

Finetuned
(811)
this model