Mistral-7B-v0.1_cola_sparse_swiglu_scratch
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3823
- Accuracy: {'accuracy': 0.8621495327102804}
- Matthews Correlation: 0.6666
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 2
- total_train_batch_size: 96
- total_eval_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation |
---|---|---|---|---|---|
1.0186 | 0.31 | 25 | 0.8870 | {'accuracy': 0.7152444870565676} | 0.2813 |
0.7573 | 0.62 | 50 | 0.6207 | {'accuracy': 0.788111217641419} | 0.4870 |
0.5186 | 0.93 | 75 | 0.5819 | {'accuracy': 0.7986577181208053} | 0.4984 |
0.4259 | 1.24 | 100 | 0.5096 | {'accuracy': 0.8149568552253116} | 0.5459 |
0.5015 | 1.55 | 125 | 0.4887 | {'accuracy': 0.8302972195589645} | 0.6063 |
0.4622 | 1.86 | 150 | 0.4573 | {'accuracy': 0.8437200383509108} | 0.6273 |
0.3411 | 2.17 | 175 | 0.4755 | {'accuracy': 0.835091083413231} | 0.5958 |
0.3637 | 2.48 | 200 | 0.4302 | {'accuracy': 0.8341323106423778} | 0.5941 |
0.3376 | 2.8 | 225 | 0.3974 | {'accuracy': 0.8446788111217641} | 0.6325 |
0.2879 | 3.11 | 250 | 0.5189 | {'accuracy': 0.8130393096836049} | 0.6287 |
0.2691 | 3.42 | 275 | 0.4033 | {'accuracy': 0.8331735378715245} | 0.6148 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
Model tree for thrunlab/Mistral-7B-v0.1_cola_sparse_swiglu_scratch
Base model
mistralai/Mistral-7B-v0.1