metadata
base_model: mlx-community/llm-jp-3-3.7b-instruct
language:
- en
- ja
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- mlx
- mlx
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
inference: false
thr3a/llm-jp-3-3.7b-instruct-mlx
The Model thr3a/llm-jp-3-3.7b-instruct-mlx was converted to MLX format from mlx-community/llm-jp-3-3.7b-instruct using mlx-lm version 0.18.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("thr3a/llm-jp-3-3.7b-instruct-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)