|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- reward-trainer |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
base_model: AI-Sweden-Models/gpt-sw3-1.3b |
|
model-index: |
|
- name: gpt1B_reward_test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt1B_reward_test |
|
|
|
This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6367 |
|
- Accuracy: 0.6504 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6878 | 0.04 | 200 | 0.6850 | 0.5791 | |
|
| 0.6724 | 0.08 | 400 | 0.6740 | 0.6024 | |
|
| 0.6611 | 0.13 | 600 | 0.6703 | 0.6081 | |
|
| 0.6435 | 0.17 | 800 | 0.6773 | 0.6036 | |
|
| 0.6787 | 0.21 | 1000 | 0.6544 | 0.6189 | |
|
| 0.7166 | 0.25 | 1200 | 0.6697 | 0.6223 | |
|
| 0.614 | 0.3 | 1400 | 0.6590 | 0.6250 | |
|
| 0.6279 | 0.34 | 1600 | 0.6422 | 0.6343 | |
|
| 0.6185 | 0.38 | 1800 | 0.6427 | 0.6389 | |
|
| 0.5539 | 0.42 | 2000 | 0.6459 | 0.6390 | |
|
| 0.5988 | 0.47 | 2200 | 0.6485 | 0.6379 | |
|
| 0.6096 | 0.51 | 2400 | 0.6570 | 0.6439 | |
|
| 0.5898 | 0.55 | 2600 | 0.6381 | 0.6441 | |
|
| 0.6366 | 0.59 | 2800 | 0.6479 | 0.6389 | |
|
| 0.6457 | 0.64 | 3000 | 0.6397 | 0.6490 | |
|
| 0.6171 | 0.68 | 3200 | 0.6476 | 0.6467 | |
|
| 0.5262 | 0.72 | 3400 | 0.6506 | 0.6458 | |
|
| 0.5723 | 0.76 | 3600 | 0.6467 | 0.6471 | |
|
| 0.6194 | 0.81 | 3800 | 0.6393 | 0.6480 | |
|
| 0.5946 | 0.85 | 4000 | 0.6375 | 0.6490 | |
|
| 0.5868 | 0.89 | 4200 | 0.6366 | 0.6503 | |
|
| 0.5905 | 0.93 | 4400 | 0.6367 | 0.6505 | |
|
| 0.5651 | 0.97 | 4600 | 0.6367 | 0.6504 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.0+cu118 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |