fineweb-distil-xlstm

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.5458 0.08 100 3.0996
2.9415 0.16 200 2.9096
2.8028 0.24 300 2.7979
2.6877 0.32 400 2.7064
2.6105 0.4 500 2.6351
2.5406 0.48 600 2.5843
2.4982 0.56 700 2.5451
2.4888 0.64 800 2.5058
2.4339 0.72 900 2.4766
2.3962 0.8 1000 2.4500
2.3711 0.88 1100 2.4281
2.3509 0.96 1200 2.4046
2.2915 1.04 1300 2.3911
2.2122 1.12 1400 2.3764
2.1985 1.2 1500 2.3662
2.1937 1.28 1600 2.3508
2.191 1.3600 1700 2.3432
2.1877 1.44 1800 2.3351
2.1629 1.52 1900 2.3276
2.1565 1.6 2000 2.3243
2.1597 1.6800 2100 2.3203
2.1529 1.76 2200 2.3170
2.1666 1.8400 2300 2.3157
2.1557 1.92 2400 2.3151
2.1579 2.0 2500 2.3150

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
26
Safetensors
Model size
551M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .