|
--- |
|
language: |
|
- en |
|
license: llama3 |
|
library_name: transformers |
|
tags: |
|
- biology |
|
- medical |
|
datasets: |
|
- thesven/SyntheticMedicalQA-4336 |
|
--- |
|
|
|
# Llama3-8B-SFT-SyntheticMedical-bnb-4bit |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6324ce4d5d0cf5c62c6e3c5a/ZMeYpx2-wRbla__Tf6fvr.png) |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
Llama3-8B-SFT-SSyntheticMedical-bnb-4bit is trained using the SFT method via QLoRA on 4336 rows of medical data to enhance it's abilities in the realm of scientific anatomy. |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
### Using the model with transformers |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
model_name_or_path = "thesven/Llama3-8B-SFT-SyntheticMedical-bnb-4bit" |
|
|
|
# BitsAndBytesConfig for loading the model in 4-bit precision |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype="float16", |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
device_map="auto", |
|
trust_remote_code=False, |
|
revision="main", |
|
quantization_config=bnb_config |
|
) |
|
model.pad_token = model.config.eos_token_id |
|
|
|
prompt_template = ''' |
|
<|begin_of_text|><|start_header_id|>system<|end_header_id|> |
|
|
|
You are an expert in the field of anatomy, help explain its topics to me.<|eot_id|><|start_header_id|>user<|end_header_id|> |
|
|
|
What is the function of the hamstring?<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
|
''' |
|
|
|
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() |
|
output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) |
|
|
|
print(generated_text) |
|
|
|
``` |