Boptruth-NeuralMonarch-7B

Boptruth-NeuralMonarch-7B is a merge of the following models using LazyMergekit:

🚨 Use the alpaca prompt format

If you use standard ChatML, you may end up with <|im_end|> tokens at the end of responses.

πŸ‘€ Looking for GGUF?

Find quantized versions of this model right here.

🧩 Configuration

slices:
  - sources:
      - model: nbeerbower/bophades-mistral-truthy-DPO-7B
        layer_range: [0, 32]
      - model: mlabonne/NeuralMonarch-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: nbeerbower/bophades-mistral-truthy-DPO-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "theprint/Boptruth-NeuralMonarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
433
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for theprint/Boptruth-NeuralMonarch-7B

Collection including theprint/Boptruth-NeuralMonarch-7B