|
|
|
|
|
import pickle |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, repeat |
|
|
|
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward |
|
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined |
|
|
|
from flash_attn import flash_attn_qkvpacked_func |
|
|
|
try: |
|
from triton.ops.flash_attention import attention as attention_triton |
|
except ImportError: |
|
attention_triton = None |
|
|
|
try: |
|
import xformers.ops as xops |
|
except ImportError: |
|
xops = None |
|
|
|
|
|
def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"): |
|
assert mode in ["fwd", "bwd", "fwd_bwd"] |
|
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1) |
|
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f) |
|
|
|
def efficiency(flop, time): |
|
return (flop / time / 10**12) if not math.isnan(time) else 0.0 |
|
|
|
|
|
def attention_pytorch(qkv, dropout_p=0.0, causal=True): |
|
""" |
|
Arguments: |
|
qkv: (batch_size, seqlen, 3, nheads, head_dim) |
|
dropout_p: float |
|
Output: |
|
output: (batch_size, seqlen, nheads, head_dim) |
|
""" |
|
batch_size, seqlen, _, nheads, d = qkv.shape |
|
q, k, v = qkv.unbind(dim=2) |
|
q = rearrange(q, 'b t h d -> (b h) t d') |
|
k = rearrange(k, 'b s h d -> (b h) d s') |
|
softmax_scale = 1.0 / math.sqrt(d) |
|
|
|
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) |
|
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), |
|
'(b h) t s -> b h t s', h=nheads) |
|
if causal: |
|
|
|
|
|
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) |
|
|
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
attention = torch.softmax(scores, dim=-1) |
|
attention_drop = F.dropout(attention, dropout_p) |
|
output = torch.einsum('bhts,bshd->bthd', attention_drop , v) |
|
return output.to(dtype=qkv.dtype) |
|
|
|
|
|
def time_fwd_bwd(func, *args, **kwargs): |
|
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs) |
|
return time_f[1].mean, time_b[1].mean |
|
|
|
|
|
repeats = 30 |
|
device = 'cuda' |
|
dtype = torch.float16 |
|
|
|
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)] |
|
causal_vals = [False, True] |
|
headdim_vals = [64, 128] |
|
dim = 2048 |
|
dropout_p = 0.0 |
|
|
|
methods = (["Flash2", "Pytorch"] |
|
+ (["Triton"] if attention_triton is not None else []) |
|
+ (["xformers.c"] if xops is not None else []) |
|
+ (["xformers.f"] if xops is not None else [])) |
|
|
|
time_f = {} |
|
time_b = {} |
|
time_f_b = {} |
|
speed_f = {} |
|
speed_b = {} |
|
speed_f_b = {} |
|
for causal in causal_vals: |
|
for headdim in headdim_vals: |
|
for batch_size, seqlen in bs_seqlen_vals: |
|
config = (causal, headdim, batch_size, seqlen) |
|
nheads = dim // headdim |
|
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, |
|
requires_grad=True) |
|
f, b = time_fwd_bwd( |
|
flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False |
|
) |
|
time_f[config, "Flash2"] = f |
|
time_b[config, "Flash2"] = b |
|
|
|
try: |
|
qkv = qkv.detach().requires_grad_(True) |
|
f, b = time_fwd_bwd( |
|
attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False |
|
) |
|
except: |
|
f, b = float('nan'), float('nan') |
|
time_f[config, "Pytorch"] = f |
|
time_b[config, "Pytorch"] = b |
|
|
|
if attention_triton is not None: |
|
q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, |
|
requires_grad=True) for _ in range(3)] |
|
|
|
try: |
|
f, b = time_fwd_bwd( |
|
attention_triton, q, k, v, causal, headdim**(-0.5), |
|
False, repeats=repeats, verbose=False |
|
) |
|
except: |
|
f, b = float('nan'), float('inf') |
|
try: |
|
_, b0 = time_fwd_bwd( |
|
attention_triton, q, k, v, causal, headdim**(-0.5), |
|
True, repeats=repeats, verbose=False |
|
) |
|
except: |
|
b0 = float('inf') |
|
time_f[config, "Triton"] = f |
|
time_b[config, "Triton"] = min(b, b0) if min(b, b0) < float('inf') else float('nan') |
|
|
|
if xops is not None: |
|
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, |
|
requires_grad=True) for _ in range(3)] |
|
f, b = time_fwd_bwd( |
|
xops.memory_efficient_attention, q, k, v, |
|
attn_bias=xops.LowerTriangularMask() if causal else None, |
|
op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp) |
|
) |
|
time_f[config, "xformers.c"] = f |
|
time_b[config, "xformers.c"] = b |
|
|
|
if xops is not None: |
|
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, |
|
requires_grad=True) for _ in range(3)] |
|
f, b = time_fwd_bwd( |
|
xops.memory_efficient_attention, q, k, v, |
|
attn_bias=xops.LowerTriangularMask() if causal else None, |
|
op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp) |
|
) |
|
time_f[config, "xformers.f"] = f |
|
time_b[config, "xformers.f"] = b |
|
|
|
print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###") |
|
for method in methods: |
|
time_f_b[config, method] = time_f[config, method] + time_b[config, method] |
|
speed_f[config, method] = efficiency( |
|
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"), |
|
time_f[config, method] |
|
) |
|
speed_b[config, method] = efficiency( |
|
flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"), |
|
time_b[config, method] |
|
) |
|
speed_f_b[config, method] = efficiency( |
|
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"), |
|
time_f_b[config, method] |
|
) |
|
print( |
|
f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, " |
|
f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, " |
|
f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s" |
|
) |
|
|
|
|
|
|
|
|
|
|