flash-attention / benchmark_flash_attention.py
theonlyengine's picture
Upload 421 files
3f9c425 verified
# Install the newest triton version with
# pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python"
import pickle
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined
from flash_attn import flash_attn_qkvpacked_func
try:
from triton.ops.flash_attention import attention as attention_triton
except ImportError:
attention_triton = None
try:
import xformers.ops as xops
except ImportError:
xops = None
def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
assert mode in ["fwd", "bwd", "fwd_bwd"]
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)
def efficiency(flop, time):
return (flop / time / 10**12) if not math.isnan(time) else 0.0
def attention_pytorch(qkv, dropout_p=0.0, causal=True):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
dropout_p: float
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size, seqlen, _, nheads, d = qkv.shape
q, k, v = qkv.unbind(dim=2)
q = rearrange(q, 'b t h d -> (b h) t d')
k = rearrange(k, 'b s h d -> (b h) d s')
softmax_scale = 1.0 / math.sqrt(d)
# Preallocate attn_weights for `baddbmm`
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
'(b h) t s -> b h t s', h=nheads)
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1)
attention_drop = F.dropout(attention, dropout_p)
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
return output.to(dtype=qkv.dtype)
def time_fwd_bwd(func, *args, **kwargs):
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
return time_f[1].mean, time_b[1].mean
repeats = 30
device = 'cuda'
dtype = torch.float16
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0
methods = (["Flash2", "Pytorch"]
+ (["Triton"] if attention_triton is not None else [])
+ (["xformers.c"] if xops is not None else [])
+ (["xformers.f"] if xops is not None else []))
time_f = {}
time_b = {}
time_f_b = {}
speed_f = {}
speed_b = {}
speed_f_b = {}
for causal in causal_vals:
for headdim in headdim_vals:
for batch_size, seqlen in bs_seqlen_vals:
config = (causal, headdim, batch_size, seqlen)
nheads = dim // headdim
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
requires_grad=True)
f, b = time_fwd_bwd(
flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
)
time_f[config, "Flash2"] = f
time_b[config, "Flash2"] = b
try:
qkv = qkv.detach().requires_grad_(True)
f, b = time_fwd_bwd(
attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
)
except: # Skip if OOM
f, b = float('nan'), float('nan')
time_f[config, "Pytorch"] = f
time_b[config, "Pytorch"] = b
if attention_triton is not None:
q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
requires_grad=True) for _ in range(3)]
# Try both values of sequence_parallel and pick the faster one
try:
f, b = time_fwd_bwd(
attention_triton, q, k, v, causal, headdim**(-0.5),
False, repeats=repeats, verbose=False
)
except:
f, b = float('nan'), float('inf')
try:
_, b0 = time_fwd_bwd(
attention_triton, q, k, v, causal, headdim**(-0.5),
True, repeats=repeats, verbose=False
)
except:
b0 = float('inf')
time_f[config, "Triton"] = f
time_b[config, "Triton"] = min(b, b0) if min(b, b0) < float('inf') else float('nan')
if xops is not None:
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
requires_grad=True) for _ in range(3)]
f, b = time_fwd_bwd(
xops.memory_efficient_attention, q, k, v,
attn_bias=xops.LowerTriangularMask() if causal else None,
op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
)
time_f[config, "xformers.c"] = f
time_b[config, "xformers.c"] = b
if xops is not None:
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
requires_grad=True) for _ in range(3)]
f, b = time_fwd_bwd(
xops.memory_efficient_attention, q, k, v,
attn_bias=xops.LowerTriangularMask() if causal else None,
op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp)
)
time_f[config, "xformers.f"] = f
time_b[config, "xformers.f"] = b
print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
for method in methods:
time_f_b[config, method] = time_f[config, method] + time_b[config, method]
speed_f[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
time_f[config, method]
)
speed_b[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
time_b[config, method]
)
speed_f_b[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
time_f_b[config, method]
)
print(
f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
)
# with open('flash2_attn_time.plk', 'wb') as fp:
# pickle.dump((speed_f, speed_b, speed_f_b), fp, protocol=pickle.HIGHEST_PROTOCOL)