File size: 7,433 Bytes
3f9c425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Install the newest triton version with
# pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python"
import pickle
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat

from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined

from flash_attn import flash_attn_qkvpacked_func

try:
    from triton.ops.flash_attention import attention as attention_triton
except ImportError:
    attention_triton = None

try:
    import xformers.ops as xops
except ImportError:
    xops = None


def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
    assert mode in ["fwd", "bwd", "fwd_bwd"]
    f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
    return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)

def efficiency(flop, time):
    return (flop / time / 10**12) if not math.isnan(time) else 0.0


def attention_pytorch(qkv, dropout_p=0.0, causal=True):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        dropout_p: float
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
    """
    batch_size, seqlen, _, nheads, d = qkv.shape
    q, k, v = qkv.unbind(dim=2)
    q = rearrange(q, 'b t h d -> (b h) t d')
    k = rearrange(k, 'b s h d -> (b h) d s')
    softmax_scale = 1.0 / math.sqrt(d)
    # Preallocate attn_weights for `baddbmm`
    scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
    scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
                       '(b h) t s -> b h t s', h=nheads)
    if causal:
        # "triu_tril_cuda_template" not implemented for 'BFloat16'
        # So we have to construct the mask in float
        causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
        # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
        scores = scores + causal_mask.to(dtype=scores.dtype)
    attention = torch.softmax(scores, dim=-1)
    attention_drop = F.dropout(attention, dropout_p)
    output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    return output.to(dtype=qkv.dtype)


def time_fwd_bwd(func, *args, **kwargs):
    time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
    return time_f[1].mean, time_b[1].mean


repeats = 30
device = 'cuda'
dtype = torch.float16

bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0

methods = (["Flash2", "Pytorch"]
           + (["Triton"] if attention_triton is not None else [])
           + (["xformers.c"] if xops is not None else [])
           + (["xformers.f"] if xops is not None else []))

time_f = {}
time_b = {}
time_f_b = {}
speed_f = {}
speed_b = {}
speed_f_b = {}
for causal in causal_vals:
    for headdim in headdim_vals:
        for batch_size, seqlen in bs_seqlen_vals:
            config = (causal, headdim, batch_size, seqlen)
            nheads = dim // headdim
            qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
                              requires_grad=True)
            f, b = time_fwd_bwd(
                flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
            )
            time_f[config, "Flash2"] = f
            time_b[config, "Flash2"] = b

            try:
                qkv = qkv.detach().requires_grad_(True)
                f, b = time_fwd_bwd(
                    attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
                )
            except:  # Skip if OOM
                f, b = float('nan'), float('nan')
            time_f[config, "Pytorch"] = f
            time_b[config, "Pytorch"] = b

            if attention_triton is not None:
                q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
                                    requires_grad=True) for _ in range(3)]
                # Try both values of sequence_parallel and pick the faster one
                try:
                    f, b = time_fwd_bwd(
                        attention_triton, q, k, v, causal, headdim**(-0.5),
                        False, repeats=repeats, verbose=False
                    )
                except:
                    f, b = float('nan'), float('inf')
                try:
                    _, b0 = time_fwd_bwd(
                        attention_triton, q, k, v, causal, headdim**(-0.5),
                        True, repeats=repeats, verbose=False
                    )
                except:
                    b0 = float('inf')
                time_f[config, "Triton"] = f
                time_b[config, "Triton"] = min(b, b0) if min(b, b0) < float('inf') else float('nan')

            if xops is not None:
                q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
                                    requires_grad=True) for _ in range(3)]
                f, b = time_fwd_bwd(
                    xops.memory_efficient_attention, q, k, v,
                    attn_bias=xops.LowerTriangularMask() if causal else None,
                    op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
                )
                time_f[config, "xformers.c"] = f
                time_b[config, "xformers.c"] = b

            if xops is not None:
                q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
                                    requires_grad=True) for _ in range(3)]
                f, b = time_fwd_bwd(
                    xops.memory_efficient_attention, q, k, v,
                    attn_bias=xops.LowerTriangularMask() if causal else None,
                    op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp)
                )
                time_f[config, "xformers.f"] = f
                time_b[config, "xformers.f"] = b

            print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
            for method in methods:
                time_f_b[config, method] = time_f[config, method] + time_b[config, method]
                speed_f[config, method] = efficiency(
                    flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
                    time_f[config, method]
                )
                speed_b[config, method] = efficiency(
                    flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
                    time_b[config, method]
                )
                speed_f_b[config, method] = efficiency(
                    flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
                    time_f_b[config, method]
                )
                print(
                    f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
                    f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
                    f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
                )


# with open('flash2_attn_time.plk', 'wb') as fp:
#     pickle.dump((speed_f, speed_b, speed_f_b), fp, protocol=pickle.HIGHEST_PROTOCOL)