TinyAITA / README.md
Jeff man112
Update README.md
1ee91ed verified
metadata
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: TinyAITA
    results: []

TinyAITA

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset.

Model description

import torch
from transformers import pipeline, AutoTokenizer, TextStreamer
import re
tokenizer = AutoTokenizer.from_pretrained("TheBossLevel123/TinyAITA")
pipe = pipeline("text-generation", model="TheBossLevel123/TinyAITA", torch_dtype=torch.bfloat16, device_map="auto")

streamer=TextStreamer(tokenizer)
prompt = 'AITA for XYZ?'
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, streamer=streamer, eos_token_id=tokenizer.encode("<|im_end|>"))
if outputs and "generated_text" in outputs[0]:
    text = outputs[0]["generated_text"]
    print(f"Prompt: {prompt}")
    print("")
    print(text)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1