Ukiyo-e Diffusion
If you make something using these models, you're welcome to mention me @thegenerativegeneration
Named by dataset used. Current and best version is models/ukiyoe-all/v1/ema_0.9999_056000.pt
Current Plans
- clean dataset
- remove borders
- remove some of the samples with text in them
Models
Ukiyo-e-all
v1
models/ukiyoe-all/v1/ema_0.9999_056000.pt
Model configuration is:
model_config = {
'attention_resolutions': '32, 16, 8',
'class_cond': False,
'image_size': 256,
'learn_sigma': True,
'rescale_timesteps': True,
'noise_schedule': 'linear',
'num_channels': 128,
'num_heads': 4,
'num_res_blocks': 2,
'resblock_updown': True,
'use_checkpoint': True,
'use_fp16': True,
'use_scale_shift_norm': True,
}
Tips
- Results closest to original training data are achieved by turning off the secondary model in Disco Diffusion.
- Turning secondary model on can lead to very creative results
- It is not necessary to specify Ukiyo-e as artstyle to get ukiyo-e-like images.
Examples
If you make something nice using these models, I would like to link your image.
Secondary Off
Secondary On
About
Trained from scratch on a ~170000 images corpus of ukiyo-e.org filtered by colorfulness >= 5.
(Deprecated) Ukiyo-e-few
models/ukiyoe-few/v1/ukiyoe_diffusion_256_022000.pt
Finetuned on 5224 images from Wikiart (1168) and ? ().
Model configuration is
model_config = {
'attention_resolutions': '16',
'class_cond': False,
'diffusion_steps': 1000,
'rescale_timesteps': True,
'timestep_respacing': 'ddim100',
'image_size': 256,
'learn_sigma': True,
'noise_schedule': 'linear',
'num_channels': 128,
'num_heads': 1,
'num_res_blocks': 2,
'use_checkpoint': True,
'use_scale_shift_norm': False
}
Trained using a fork of guided-diffusion-sxela. Added random crop which did not lead to good results.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.