Ukiyo-e Diffusion
If you make something using these models, you're welcome to mention me @thegenerativegeneration
Named by dataset used. Current and best version is models/ukiyoe-all/v1/ema_0.9999_056000.pt
Current Plans
- clean dataset
- remove borders
- remove some of the samples with text in them
Models
Ukiyo-e-all
v1
models/ukiyoe-all/v1/ema_0.9999_056000.pt
Model configuration is:
model_config = {
'attention_resolutions': '32, 16, 8',
'class_cond': False,
'image_size': 256,
'learn_sigma': True,
'rescale_timesteps': True,
'noise_schedule': 'linear',
'num_channels': 128,
'num_heads': 4,
'num_res_blocks': 2,
'resblock_updown': True,
'use_checkpoint': True,
'use_fp16': True,
'use_scale_shift_norm': True,
}
Tips
- Results closest to original training data are achieved by turning off the secondary model in Disco Diffusion.
- Turning secondary model on can lead to very creative results
- It is not necessary to specify Ukiyo-e as artstyle to get ukiyo-e-like images.
Examples
If you make something nice using these models, I would like to link your image.
Secondary Off
Secondary On
About
Trained from scratch on a ~170000 images corpus of ukiyo-e.org filtered by colorfulness >= 5.
(Deprecated) Ukiyo-e-few
models/ukiyoe-few/v1/ukiyoe_diffusion_256_022000.pt
Finetuned on 5224 images from Wikiart (1168) and ? ().
Model configuration is
model_config = {
'attention_resolutions': '16',
'class_cond': False,
'diffusion_steps': 1000,
'rescale_timesteps': True,
'timestep_respacing': 'ddim100',
'image_size': 256,
'learn_sigma': True,
'noise_schedule': 'linear',
'num_channels': 128,
'num_heads': 1,
'num_res_blocks': 2,
'use_checkpoint': True,
'use_scale_shift_norm': False
}
Trained using a fork of guided-diffusion-sxela. Added random crop which did not lead to good results.