xlm-roberta-base-ner-coin
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0402
- Precision: 0.9865
- Recall: 0.9748
- F1: 0.9806
- Accuracy: 0.9957
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 26 | 0.0316 | 0.9075 | 0.9452 | 0.9260 | 0.9905 |
No log | 2.0 | 52 | 0.0156 | 0.9762 | 0.9719 | 0.9740 | 0.9946 |
No log | 3.0 | 78 | 0.0157 | 0.9880 | 0.9763 | 0.9821 | 0.9957 |
No log | 4.0 | 104 | 0.0153 | 0.9894 | 0.9719 | 0.9806 | 0.9959 |
No log | 5.0 | 130 | 0.0158 | 0.9850 | 0.9748 | 0.9799 | 0.9952 |
No log | 6.0 | 156 | 0.0166 | 0.9909 | 0.9674 | 0.9790 | 0.9954 |
No log | 7.0 | 182 | 0.0178 | 0.9865 | 0.9719 | 0.9791 | 0.9952 |
No log | 8.0 | 208 | 0.0971 | 0.9260 | 0.8533 | 0.8882 | 0.9798 |
No log | 9.0 | 234 | 0.2225 | 0.9314 | 0.5630 | 0.7018 | 0.9434 |
No log | 10.0 | 260 | 0.0260 | 0.9740 | 0.9452 | 0.9594 | 0.9919 |
No log | 11.0 | 286 | 0.0184 | 0.9777 | 0.9763 | 0.9770 | 0.9946 |
No log | 12.0 | 312 | 0.0185 | 0.9910 | 0.9748 | 0.9828 | 0.9962 |
No log | 13.0 | 338 | 0.0190 | 0.9807 | 0.9778 | 0.9792 | 0.9952 |
No log | 14.0 | 364 | 0.0180 | 0.9791 | 0.9733 | 0.9762 | 0.9948 |
No log | 15.0 | 390 | 0.0208 | 0.9792 | 0.9778 | 0.9785 | 0.9952 |
No log | 16.0 | 416 | 0.0237 | 0.9851 | 0.9778 | 0.9814 | 0.9959 |
No log | 17.0 | 442 | 0.0232 | 0.9880 | 0.9719 | 0.9798 | 0.9955 |
No log | 18.0 | 468 | 0.0236 | 0.9895 | 0.9733 | 0.9813 | 0.9959 |
No log | 19.0 | 494 | 0.0246 | 0.9909 | 0.9689 | 0.9798 | 0.9955 |
0.0374 | 20.0 | 520 | 0.0216 | 0.9778 | 0.9807 | 0.9793 | 0.9951 |
0.0374 | 21.0 | 546 | 0.0257 | 0.9880 | 0.9733 | 0.9806 | 0.9955 |
0.0374 | 22.0 | 572 | 0.0226 | 0.9880 | 0.9793 | 0.9836 | 0.9962 |
0.0374 | 23.0 | 598 | 0.0237 | 0.9792 | 0.9748 | 0.9770 | 0.9948 |
0.0374 | 24.0 | 624 | 0.0330 | 0.9734 | 0.9763 | 0.9749 | 0.9943 |
0.0374 | 25.0 | 650 | 0.0300 | 0.9821 | 0.9778 | 0.9800 | 0.9954 |
0.0374 | 26.0 | 676 | 0.0280 | 0.9821 | 0.9748 | 0.9784 | 0.9951 |
0.0374 | 27.0 | 702 | 0.0247 | 0.9939 | 0.9674 | 0.9805 | 0.9957 |
0.0374 | 28.0 | 728 | 0.0280 | 0.9924 | 0.9704 | 0.9813 | 0.9959 |
0.0374 | 29.0 | 754 | 0.0266 | 0.9806 | 0.9733 | 0.9770 | 0.9949 |
0.0374 | 30.0 | 780 | 0.0215 | 0.9866 | 0.9807 | 0.9837 | 0.9962 |
0.0374 | 31.0 | 806 | 0.0263 | 0.9820 | 0.9719 | 0.9769 | 0.9949 |
0.0374 | 32.0 | 832 | 0.0306 | 0.9880 | 0.9733 | 0.9806 | 0.9957 |
0.0374 | 33.0 | 858 | 0.0273 | 0.9850 | 0.9733 | 0.9791 | 0.9954 |
0.0374 | 34.0 | 884 | 0.0253 | 0.9787 | 0.9541 | 0.9662 | 0.9928 |
0.0374 | 35.0 | 910 | 0.0298 | 0.9863 | 0.9630 | 0.9745 | 0.9944 |
0.0374 | 36.0 | 936 | 0.0251 | 0.9849 | 0.9674 | 0.9761 | 0.9948 |
0.0374 | 37.0 | 962 | 0.0308 | 0.9806 | 0.9748 | 0.9777 | 0.9951 |
0.0374 | 38.0 | 988 | 0.0303 | 0.9706 | 0.9793 | 0.9749 | 0.9943 |
0.0027 | 39.0 | 1014 | 0.0288 | 0.9866 | 0.9793 | 0.9829 | 0.9962 |
0.0027 | 40.0 | 1040 | 0.0285 | 0.9792 | 0.9778 | 0.9785 | 0.9952 |
0.0027 | 41.0 | 1066 | 0.0316 | 0.9864 | 0.9704 | 0.9783 | 0.9952 |
0.0027 | 42.0 | 1092 | 0.0307 | 0.9836 | 0.9778 | 0.9807 | 0.9957 |
0.0027 | 43.0 | 1118 | 0.0312 | 0.9865 | 0.9763 | 0.9814 | 0.9959 |
0.0027 | 44.0 | 1144 | 0.0325 | 0.9880 | 0.9719 | 0.9798 | 0.9955 |
0.0027 | 45.0 | 1170 | 0.0330 | 0.9821 | 0.9778 | 0.9800 | 0.9955 |
0.0027 | 46.0 | 1196 | 0.0384 | 0.9864 | 0.9689 | 0.9776 | 0.9951 |
0.0027 | 47.0 | 1222 | 0.0349 | 0.9865 | 0.9748 | 0.9806 | 0.9957 |
0.0027 | 48.0 | 1248 | 0.0335 | 0.9836 | 0.9763 | 0.9799 | 0.9955 |
0.0027 | 49.0 | 1274 | 0.0319 | 0.9895 | 0.9763 | 0.9828 | 0.9962 |
0.0027 | 50.0 | 1300 | 0.0334 | 0.9865 | 0.9763 | 0.9814 | 0.9959 |
0.0027 | 51.0 | 1326 | 0.0346 | 0.9880 | 0.9763 | 0.9821 | 0.9960 |
0.0027 | 52.0 | 1352 | 0.0383 | 0.9821 | 0.9763 | 0.9792 | 0.9954 |
0.0027 | 53.0 | 1378 | 0.0354 | 0.9895 | 0.9733 | 0.9813 | 0.9959 |
0.0027 | 54.0 | 1404 | 0.0385 | 0.9806 | 0.9748 | 0.9777 | 0.9949 |
0.0027 | 55.0 | 1430 | 0.0360 | 0.9792 | 0.9763 | 0.9777 | 0.9949 |
0.0027 | 56.0 | 1456 | 0.0376 | 0.9821 | 0.9763 | 0.9792 | 0.9952 |
0.0027 | 57.0 | 1482 | 0.0367 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0009 | 58.0 | 1508 | 0.0377 | 0.9792 | 0.9778 | 0.9785 | 0.9951 |
0.0009 | 59.0 | 1534 | 0.0395 | 0.9836 | 0.9748 | 0.9792 | 0.9952 |
0.0009 | 60.0 | 1560 | 0.0362 | 0.9851 | 0.9778 | 0.9814 | 0.9957 |
0.0009 | 61.0 | 1586 | 0.0303 | 0.9778 | 0.9793 | 0.9785 | 0.9951 |
0.0009 | 62.0 | 1612 | 0.0338 | 0.9822 | 0.9793 | 0.9807 | 0.9955 |
0.0009 | 63.0 | 1638 | 0.0354 | 0.9851 | 0.9793 | 0.9822 | 0.9960 |
0.0009 | 64.0 | 1664 | 0.0361 | 0.9836 | 0.9793 | 0.9814 | 0.9959 |
0.0009 | 65.0 | 1690 | 0.0366 | 0.9822 | 0.9793 | 0.9807 | 0.9957 |
0.0009 | 66.0 | 1716 | 0.0384 | 0.9851 | 0.9778 | 0.9814 | 0.9959 |
0.0009 | 67.0 | 1742 | 0.0391 | 0.9865 | 0.9763 | 0.9814 | 0.9959 |
0.0009 | 68.0 | 1768 | 0.0399 | 0.9851 | 0.9763 | 0.9807 | 0.9957 |
0.0009 | 69.0 | 1794 | 0.0396 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0009 | 70.0 | 1820 | 0.0410 | 0.9865 | 0.9748 | 0.9806 | 0.9957 |
0.0009 | 71.0 | 1846 | 0.0361 | 0.9836 | 0.9748 | 0.9792 | 0.9954 |
0.0009 | 72.0 | 1872 | 0.0371 | 0.9880 | 0.9719 | 0.9798 | 0.9955 |
0.0009 | 73.0 | 1898 | 0.0365 | 0.9865 | 0.9748 | 0.9806 | 0.9957 |
0.0009 | 74.0 | 1924 | 0.0359 | 0.9836 | 0.9763 | 0.9799 | 0.9955 |
0.0009 | 75.0 | 1950 | 0.0369 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0009 | 76.0 | 1976 | 0.0380 | 0.9850 | 0.9733 | 0.9791 | 0.9954 |
0.0005 | 77.0 | 2002 | 0.0382 | 0.9835 | 0.9733 | 0.9784 | 0.9952 |
0.0005 | 78.0 | 2028 | 0.0384 | 0.9850 | 0.9733 | 0.9791 | 0.9954 |
0.0005 | 79.0 | 2054 | 0.0385 | 0.9864 | 0.9704 | 0.9783 | 0.9952 |
0.0005 | 80.0 | 2080 | 0.0384 | 0.9865 | 0.9733 | 0.9799 | 0.9955 |
0.0005 | 81.0 | 2106 | 0.0375 | 0.9835 | 0.9733 | 0.9784 | 0.9952 |
0.0005 | 82.0 | 2132 | 0.0375 | 0.9850 | 0.9733 | 0.9791 | 0.9954 |
0.0005 | 83.0 | 2158 | 0.0380 | 0.9850 | 0.9733 | 0.9791 | 0.9954 |
0.0005 | 84.0 | 2184 | 0.0385 | 0.9850 | 0.9733 | 0.9791 | 0.9954 |
0.0005 | 85.0 | 2210 | 0.0387 | 0.9880 | 0.9733 | 0.9806 | 0.9957 |
0.0005 | 86.0 | 2236 | 0.0391 | 0.9895 | 0.9733 | 0.9813 | 0.9959 |
0.0005 | 87.0 | 2262 | 0.0388 | 0.9880 | 0.9748 | 0.9814 | 0.9959 |
0.0005 | 88.0 | 2288 | 0.0390 | 0.9880 | 0.9748 | 0.9814 | 0.9959 |
0.0005 | 89.0 | 2314 | 0.0391 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0005 | 90.0 | 2340 | 0.0393 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0005 | 91.0 | 2366 | 0.0392 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0005 | 92.0 | 2392 | 0.0394 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0005 | 93.0 | 2418 | 0.0394 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0005 | 94.0 | 2444 | 0.0395 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0005 | 95.0 | 2470 | 0.0395 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0005 | 96.0 | 2496 | 0.0396 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0003 | 97.0 | 2522 | 0.0398 | 0.9850 | 0.9748 | 0.9799 | 0.9955 |
0.0003 | 98.0 | 2548 | 0.0399 | 0.9865 | 0.9748 | 0.9806 | 0.9957 |
0.0003 | 99.0 | 2574 | 0.0401 | 0.9865 | 0.9748 | 0.9806 | 0.9957 |
0.0003 | 100.0 | 2600 | 0.0402 | 0.9865 | 0.9748 | 0.9806 | 0.9957 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 120
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for thanhdath/xlm-roberta-base-ner-coin
Base model
FacebookAI/xlm-roberta-base