xlm-roberta-base-ner-coin

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0402
  • Precision: 0.9865
  • Recall: 0.9748
  • F1: 0.9806
  • Accuracy: 0.9957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 26 0.0316 0.9075 0.9452 0.9260 0.9905
No log 2.0 52 0.0156 0.9762 0.9719 0.9740 0.9946
No log 3.0 78 0.0157 0.9880 0.9763 0.9821 0.9957
No log 4.0 104 0.0153 0.9894 0.9719 0.9806 0.9959
No log 5.0 130 0.0158 0.9850 0.9748 0.9799 0.9952
No log 6.0 156 0.0166 0.9909 0.9674 0.9790 0.9954
No log 7.0 182 0.0178 0.9865 0.9719 0.9791 0.9952
No log 8.0 208 0.0971 0.9260 0.8533 0.8882 0.9798
No log 9.0 234 0.2225 0.9314 0.5630 0.7018 0.9434
No log 10.0 260 0.0260 0.9740 0.9452 0.9594 0.9919
No log 11.0 286 0.0184 0.9777 0.9763 0.9770 0.9946
No log 12.0 312 0.0185 0.9910 0.9748 0.9828 0.9962
No log 13.0 338 0.0190 0.9807 0.9778 0.9792 0.9952
No log 14.0 364 0.0180 0.9791 0.9733 0.9762 0.9948
No log 15.0 390 0.0208 0.9792 0.9778 0.9785 0.9952
No log 16.0 416 0.0237 0.9851 0.9778 0.9814 0.9959
No log 17.0 442 0.0232 0.9880 0.9719 0.9798 0.9955
No log 18.0 468 0.0236 0.9895 0.9733 0.9813 0.9959
No log 19.0 494 0.0246 0.9909 0.9689 0.9798 0.9955
0.0374 20.0 520 0.0216 0.9778 0.9807 0.9793 0.9951
0.0374 21.0 546 0.0257 0.9880 0.9733 0.9806 0.9955
0.0374 22.0 572 0.0226 0.9880 0.9793 0.9836 0.9962
0.0374 23.0 598 0.0237 0.9792 0.9748 0.9770 0.9948
0.0374 24.0 624 0.0330 0.9734 0.9763 0.9749 0.9943
0.0374 25.0 650 0.0300 0.9821 0.9778 0.9800 0.9954
0.0374 26.0 676 0.0280 0.9821 0.9748 0.9784 0.9951
0.0374 27.0 702 0.0247 0.9939 0.9674 0.9805 0.9957
0.0374 28.0 728 0.0280 0.9924 0.9704 0.9813 0.9959
0.0374 29.0 754 0.0266 0.9806 0.9733 0.9770 0.9949
0.0374 30.0 780 0.0215 0.9866 0.9807 0.9837 0.9962
0.0374 31.0 806 0.0263 0.9820 0.9719 0.9769 0.9949
0.0374 32.0 832 0.0306 0.9880 0.9733 0.9806 0.9957
0.0374 33.0 858 0.0273 0.9850 0.9733 0.9791 0.9954
0.0374 34.0 884 0.0253 0.9787 0.9541 0.9662 0.9928
0.0374 35.0 910 0.0298 0.9863 0.9630 0.9745 0.9944
0.0374 36.0 936 0.0251 0.9849 0.9674 0.9761 0.9948
0.0374 37.0 962 0.0308 0.9806 0.9748 0.9777 0.9951
0.0374 38.0 988 0.0303 0.9706 0.9793 0.9749 0.9943
0.0027 39.0 1014 0.0288 0.9866 0.9793 0.9829 0.9962
0.0027 40.0 1040 0.0285 0.9792 0.9778 0.9785 0.9952
0.0027 41.0 1066 0.0316 0.9864 0.9704 0.9783 0.9952
0.0027 42.0 1092 0.0307 0.9836 0.9778 0.9807 0.9957
0.0027 43.0 1118 0.0312 0.9865 0.9763 0.9814 0.9959
0.0027 44.0 1144 0.0325 0.9880 0.9719 0.9798 0.9955
0.0027 45.0 1170 0.0330 0.9821 0.9778 0.9800 0.9955
0.0027 46.0 1196 0.0384 0.9864 0.9689 0.9776 0.9951
0.0027 47.0 1222 0.0349 0.9865 0.9748 0.9806 0.9957
0.0027 48.0 1248 0.0335 0.9836 0.9763 0.9799 0.9955
0.0027 49.0 1274 0.0319 0.9895 0.9763 0.9828 0.9962
0.0027 50.0 1300 0.0334 0.9865 0.9763 0.9814 0.9959
0.0027 51.0 1326 0.0346 0.9880 0.9763 0.9821 0.9960
0.0027 52.0 1352 0.0383 0.9821 0.9763 0.9792 0.9954
0.0027 53.0 1378 0.0354 0.9895 0.9733 0.9813 0.9959
0.0027 54.0 1404 0.0385 0.9806 0.9748 0.9777 0.9949
0.0027 55.0 1430 0.0360 0.9792 0.9763 0.9777 0.9949
0.0027 56.0 1456 0.0376 0.9821 0.9763 0.9792 0.9952
0.0027 57.0 1482 0.0367 0.9850 0.9748 0.9799 0.9955
0.0009 58.0 1508 0.0377 0.9792 0.9778 0.9785 0.9951
0.0009 59.0 1534 0.0395 0.9836 0.9748 0.9792 0.9952
0.0009 60.0 1560 0.0362 0.9851 0.9778 0.9814 0.9957
0.0009 61.0 1586 0.0303 0.9778 0.9793 0.9785 0.9951
0.0009 62.0 1612 0.0338 0.9822 0.9793 0.9807 0.9955
0.0009 63.0 1638 0.0354 0.9851 0.9793 0.9822 0.9960
0.0009 64.0 1664 0.0361 0.9836 0.9793 0.9814 0.9959
0.0009 65.0 1690 0.0366 0.9822 0.9793 0.9807 0.9957
0.0009 66.0 1716 0.0384 0.9851 0.9778 0.9814 0.9959
0.0009 67.0 1742 0.0391 0.9865 0.9763 0.9814 0.9959
0.0009 68.0 1768 0.0399 0.9851 0.9763 0.9807 0.9957
0.0009 69.0 1794 0.0396 0.9850 0.9748 0.9799 0.9955
0.0009 70.0 1820 0.0410 0.9865 0.9748 0.9806 0.9957
0.0009 71.0 1846 0.0361 0.9836 0.9748 0.9792 0.9954
0.0009 72.0 1872 0.0371 0.9880 0.9719 0.9798 0.9955
0.0009 73.0 1898 0.0365 0.9865 0.9748 0.9806 0.9957
0.0009 74.0 1924 0.0359 0.9836 0.9763 0.9799 0.9955
0.0009 75.0 1950 0.0369 0.9850 0.9748 0.9799 0.9955
0.0009 76.0 1976 0.0380 0.9850 0.9733 0.9791 0.9954
0.0005 77.0 2002 0.0382 0.9835 0.9733 0.9784 0.9952
0.0005 78.0 2028 0.0384 0.9850 0.9733 0.9791 0.9954
0.0005 79.0 2054 0.0385 0.9864 0.9704 0.9783 0.9952
0.0005 80.0 2080 0.0384 0.9865 0.9733 0.9799 0.9955
0.0005 81.0 2106 0.0375 0.9835 0.9733 0.9784 0.9952
0.0005 82.0 2132 0.0375 0.9850 0.9733 0.9791 0.9954
0.0005 83.0 2158 0.0380 0.9850 0.9733 0.9791 0.9954
0.0005 84.0 2184 0.0385 0.9850 0.9733 0.9791 0.9954
0.0005 85.0 2210 0.0387 0.9880 0.9733 0.9806 0.9957
0.0005 86.0 2236 0.0391 0.9895 0.9733 0.9813 0.9959
0.0005 87.0 2262 0.0388 0.9880 0.9748 0.9814 0.9959
0.0005 88.0 2288 0.0390 0.9880 0.9748 0.9814 0.9959
0.0005 89.0 2314 0.0391 0.9850 0.9748 0.9799 0.9955
0.0005 90.0 2340 0.0393 0.9850 0.9748 0.9799 0.9955
0.0005 91.0 2366 0.0392 0.9850 0.9748 0.9799 0.9955
0.0005 92.0 2392 0.0394 0.9850 0.9748 0.9799 0.9955
0.0005 93.0 2418 0.0394 0.9850 0.9748 0.9799 0.9955
0.0005 94.0 2444 0.0395 0.9850 0.9748 0.9799 0.9955
0.0005 95.0 2470 0.0395 0.9850 0.9748 0.9799 0.9955
0.0005 96.0 2496 0.0396 0.9850 0.9748 0.9799 0.9955
0.0003 97.0 2522 0.0398 0.9850 0.9748 0.9799 0.9955
0.0003 98.0 2548 0.0399 0.9865 0.9748 0.9806 0.9957
0.0003 99.0 2574 0.0401 0.9865 0.9748 0.9806 0.9957
0.0003 100.0 2600 0.0402 0.9865 0.9748 0.9806 0.9957

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
120
Safetensors
Model size
277M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thanhdath/xlm-roberta-base-ner-coin

Finetuned
(2664)
this model