bert-30M-uncased-classification-fqa-100e

This model is a fine-tuned version of vietgpt/bert-30M-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0654
  • Accuracy: 0.9897

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 110 5.2087 0.0051
No log 2.0 220 5.2019 0.0
No log 3.0 330 5.1778 0.0
No log 4.0 440 5.0728 0.0154
5.1354 5.0 550 4.7829 0.0974
5.1354 6.0 660 4.4895 0.1385
5.1354 7.0 770 4.1981 0.2923
5.1354 8.0 880 3.9328 0.4359
5.1354 9.0 990 3.6937 0.5641
4.2477 10.0 1100 3.4751 0.6308
4.2477 11.0 1210 3.2537 0.7026
4.2477 12.0 1320 3.0355 0.7590
4.2477 13.0 1430 2.8367 0.7846
3.1067 14.0 1540 2.6431 0.8103
3.1067 15.0 1650 2.4553 0.8462
3.1067 16.0 1760 2.2817 0.8718
3.1067 17.0 1870 2.1120 0.8821
3.1067 18.0 1980 1.9496 0.8974
2.1912 19.0 2090 1.7956 0.9128
2.1912 20.0 2200 1.6507 0.9179
2.1912 21.0 2310 1.5192 0.9282
2.1912 22.0 2420 1.3942 0.9333
1.48 23.0 2530 1.2758 0.9436
1.48 24.0 2640 1.1671 0.9538
1.48 25.0 2750 1.0670 0.9590
1.48 26.0 2860 0.9741 0.9590
1.48 27.0 2970 0.8877 0.9590
0.9627 28.0 3080 0.8078 0.9641
0.9627 29.0 3190 0.7388 0.9641
0.9627 30.0 3300 0.6762 0.9692
0.9627 31.0 3410 0.6123 0.9744
0.6161 32.0 3520 0.5591 0.9744
0.6161 33.0 3630 0.5129 0.9744
0.6161 34.0 3740 0.4734 0.9744
0.6161 35.0 3850 0.4341 0.9692
0.6161 36.0 3960 0.3932 0.9846
0.3834 37.0 4070 0.3645 0.9795
0.3834 38.0 4180 0.3398 0.9744
0.3834 39.0 4290 0.3128 0.9846
0.3834 40.0 4400 0.2884 0.9795
0.2414 41.0 4510 0.2659 0.9846
0.2414 42.0 4620 0.2488 0.9846
0.2414 43.0 4730 0.2286 0.9897
0.2414 44.0 4840 0.2145 0.9897
0.2414 45.0 4950 0.2014 0.9949
0.1522 46.0 5060 0.1913 0.9897
0.1522 47.0 5170 0.1808 0.9897
0.1522 48.0 5280 0.1697 0.9897
0.1522 49.0 5390 0.1604 0.9846
0.0981 50.0 5500 0.1551 0.9846
0.0981 51.0 5610 0.1448 0.9897
0.0981 52.0 5720 0.1390 0.9949
0.0981 53.0 5830 0.1348 0.9846
0.0981 54.0 5940 0.1268 0.9897
0.0679 55.0 6050 0.1206 0.9897
0.0679 56.0 6160 0.1178 0.9897
0.0679 57.0 6270 0.1162 0.9897
0.0679 58.0 6380 0.1126 0.9897
0.0679 59.0 6490 0.1086 0.9897
0.0504 60.0 6600 0.1053 0.9897
0.0504 61.0 6710 0.1020 0.9897
0.0504 62.0 6820 0.0995 0.9897
0.0504 63.0 6930 0.0973 0.9897
0.0397 64.0 7040 0.0968 0.9897
0.0397 65.0 7150 0.0921 0.9949
0.0397 66.0 7260 0.0900 0.9897
0.0397 67.0 7370 0.0886 0.9949
0.0397 68.0 7480 0.0865 0.9949
0.0321 69.0 7590 0.0854 0.9949
0.0321 70.0 7700 0.0849 0.9949
0.0321 71.0 7810 0.0835 0.9897
0.0321 72.0 7920 0.0822 0.9949
0.0269 73.0 8030 0.0805 0.9897
0.0269 74.0 8140 0.0789 0.9949
0.0269 75.0 8250 0.0781 0.9897
0.0269 76.0 8360 0.0773 0.9897
0.0269 77.0 8470 0.0760 0.9897
0.0229 78.0 8580 0.0749 0.9949
0.0229 79.0 8690 0.0745 0.9897
0.0229 80.0 8800 0.0736 0.9897
0.0229 81.0 8910 0.0728 0.9949
0.0202 82.0 9020 0.0717 0.9949
0.0202 83.0 9130 0.0711 0.9949
0.0202 84.0 9240 0.0711 0.9949
0.0202 85.0 9350 0.0710 0.9897
0.0202 86.0 9460 0.0704 0.9897
0.018 87.0 9570 0.0687 0.9897
0.018 88.0 9680 0.0685 0.9897
0.018 89.0 9790 0.0677 0.9897
0.018 90.0 9900 0.0675 0.9897
0.0165 91.0 10010 0.0669 0.9897
0.0165 92.0 10120 0.0673 0.9897
0.0165 93.0 10230 0.0664 0.9897
0.0165 94.0 10340 0.0658 0.9897
0.0165 95.0 10450 0.0657 0.9897
0.0156 96.0 10560 0.0657 0.9897
0.0156 97.0 10670 0.0656 0.9897
0.0156 98.0 10780 0.0655 0.9897
0.0156 99.0 10890 0.0654 0.9897
0.0149 100.0 11000 0.0654 0.9897

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
35
Safetensors
Model size
34.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thangvip/bert-30M-uncased-classification-fqa-100e

Finetuned
(6)
this model