tgrhn's picture
End of training
451f2b2 verified
|
raw
history blame
2.65 kB
metadata
license: mit
base_model: pyannote/segmentation-3.0
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - diarizers-community/ami
model-index:
  - name: speaker-segmentation-fine-tuned-ami-2
    results: []

speaker-segmentation-fine-tuned-ami-2

This model is a fine-tuned version of pyannote/segmentation-3.0 on the diarizers-community/ami ihm dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3764
  • Der: 0.1401
  • False Alarm: 0.0503
  • Missed Detection: 0.0575
  • Confusion: 0.0323

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.4149 1.0 1427 0.3607 0.1407 0.0492 0.0593 0.0323
0.3915 2.0 2854 0.3684 0.1422 0.0460 0.0621 0.0340
0.3748 3.0 4281 0.3730 0.1419 0.0530 0.0570 0.0318
0.3778 4.0 5708 0.3649 0.1409 0.0472 0.0611 0.0326
0.3565 5.0 7135 0.3723 0.1415 0.0501 0.0591 0.0324
0.3566 6.0 8562 0.3740 0.1406 0.0499 0.0584 0.0323
0.3534 7.0 9989 0.3736 0.1399 0.0493 0.0581 0.0325
0.3418 8.0 11416 0.3744 0.1397 0.0500 0.0577 0.0321
0.3388 9.0 12843 0.3777 0.1403 0.0505 0.0574 0.0324
0.346 10.0 14270 0.3764 0.1401 0.0503 0.0575 0.0323

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.19.1