ner-multilingual-bert

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0002
  • Precision: 0.9998
  • Recall: 0.9991
  • F1: 0.9994
  • Accuracy: 1.0000

Model description

Trained to detect author and publish dates out of text beginnings

Intended uses & limitations

More information needed

Training and evaluation data

See Dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0108 0.2 250 0.0039 0.9942 0.9818 0.9880 0.9992
0.0022 0.4 500 0.0021 0.9863 0.9861 0.9862 0.9993
0.0006 0.61 750 0.0007 0.9998 0.9975 0.9986 0.9999
0.0004 0.81 1000 0.0002 0.9998 0.9991 0.9994 1.0000

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
18
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for textminr/ner-multilingual-bert

Finetuned
(621)
this model