testmoto's picture
c4982a98a9c8917f6eb78f18770fd5de072c9a09331ad56a9478ae61c8c6c389
cd0df15 verified
|
raw
history blame
1.24 kB
metadata
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
  To access Gemma on Hugging Face, you’re required to review and agree to
  Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
base_model: google/gemma-2-9b
tags:
  - mlx

testmoto/gemma-2-9b-synthetic_coding

The Model testmoto/gemma-2-9b-synthetic_coding was converted to MLX format from google/gemma-2-9b using mlx-lm version 0.20.1.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("testmoto/gemma-2-9b-synthetic_coding")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)