testmoto's picture
bbee6c0cfb908f013a8af7fcdfb0bbcb9f1e3e76408dec354fac8f6174ad6ac4
df35f17 verified
|
raw
history blame
925 Bytes
metadata
base_model: testmoto/gemma-2-llm2024-dpo-02
library_name: transformers
tags:
  - mergekit
  - merge
  - mlx
  - mlx

testmoto/gemma-2-9b-mix_coding_magpie

The Model testmoto/gemma-2-9b-mix_coding_magpie was converted to MLX format from testmoto/gemma-2-llm2024-dpo-02 using mlx-lm version 0.20.4.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("testmoto/gemma-2-9b-mix_coding_magpie")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)