testmoto's picture
59e05b6c2319c77a40cde6df8aaf251c39d87d44e7fe10c7cb11509aed76bb36
d3bc93c verified
|
raw
history blame
1.22 kB
metadata
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
  To access Gemma on Hugging Face, you’re required to review and agree to
  Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
tags:
  - mlx
base_model: google/gemma-2-9b

testmoto/gemma-2-9b-jglue_jssts

The Model testmoto/gemma-2-9b-jglue_jssts was converted to MLX format from google/gemma-2-9b using mlx-lm version 0.20.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("testmoto/gemma-2-9b-jglue_jssts")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)