Self-Training Elicits Concise Reasoning in Large Language Models
This model is fine-tuned using self-training methods to generate more concise reasoning paths for reasoning tasks while maintaining accuracy.
Model Details
- Developed by: Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, Se-Young Yun at KAIST AI
- Model type: Fine-tuned Large Language Model for concise reasoning
- Language(s) (NLP): English
- License: MIT
- Finetuned from model: google/gemma-2-2b-it
- Repository: https://github.com/TergelMunkhbat/concise-reasoning
- Paper: Self-Training Elicits Concise Reasoning in Large Language Models
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "tergel/gemma-2-2b-it-gsm8k-fs-gpt4o-bon"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16)
question = "A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?"
inputs = tokenizer(question, return_tensors="pt").to(device)
input_length = len(inputs['input_ids'][0])
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
print(response)
For more detailed information about training methods, evaluation results, limitations, and technical specifications, please refer to our paper.
Citation
@article{munkhbat2025self,
title={Self-Training Elicits Concise Reasoning in Large Language Models},
author={Munkhbat, Tergel and Ho, Namgyu and Kim, Seohyun and Yang, Yongjin and Kim, Yujin and Yun, Se-Young},
journal={arXiv preprint arXiv:2502.20122},
year={2025}
}
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.