metadata
license: mit
datasets:
- vicgalle/alpaca-gpt4
language:
- en
tags:
- instruction-tuning
- alpaca
- gpt4
- TensorBlock
- GGUF
base_model: vicgalle/gpt2-alpaca-gpt4
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
vicgalle/gpt2-alpaca-gpt4 - GGUF
This repo contains GGUF format model files for vicgalle/gpt2-alpaca-gpt4.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
gpt2-alpaca-gpt4-Q2_K.gguf | Q2_K | 0.076 GB | smallest, significant quality loss - not recommended for most purposes |
gpt2-alpaca-gpt4-Q3_K_S.gguf | Q3_K_S | 0.084 GB | very small, high quality loss |
gpt2-alpaca-gpt4-Q3_K_M.gguf | Q3_K_M | 0.091 GB | very small, high quality loss |
gpt2-alpaca-gpt4-Q3_K_L.gguf | Q3_K_L | 0.095 GB | small, substantial quality loss |
gpt2-alpaca-gpt4-Q4_0.gguf | Q4_0 | 0.099 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
gpt2-alpaca-gpt4-Q4_K_S.gguf | Q4_K_S | 0.100 GB | small, greater quality loss |
gpt2-alpaca-gpt4-Q4_K_M.gguf | Q4_K_M | 0.105 GB | medium, balanced quality - recommended |
gpt2-alpaca-gpt4-Q5_0.gguf | Q5_0 | 0.114 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
gpt2-alpaca-gpt4-Q5_K_S.gguf | Q5_K_S | 0.114 GB | large, low quality loss - recommended |
gpt2-alpaca-gpt4-Q5_K_M.gguf | Q5_K_M | 0.118 GB | large, very low quality loss - recommended |
gpt2-alpaca-gpt4-Q6_K.gguf | Q6_K | 0.129 GB | very large, extremely low quality loss |
gpt2-alpaca-gpt4-Q8_0.gguf | Q8_0 | 0.165 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/gpt2-alpaca-gpt4-GGUF --include "gpt2-alpaca-gpt4-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/gpt2-alpaca-gpt4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'