Transformers
GGUF
TensorBlock
GGUF
Eval Results
Inference Endpoints
conversational
morriszms's picture
Upload folder using huggingface_hub
cd84e25 verified
metadata
license: llama3
library_name: transformers
datasets:
  - aqua_rat
  - microsoft/orca-math-word-problems-200k
  - m-a-p/CodeFeedback-Filtered-Instruction
base_model: abacusai/Smaug-Llama-3-70B-Instruct-32K
tags:
  - TensorBlock
  - GGUF
model-index:
  - name: Smaug-Llama-3-70B-Instruct-32K
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 77.61
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 49.07
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 21.22
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.15
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.43
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 41.83
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct-32K
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

abacusai/Smaug-Llama-3-70B-Instruct-32K - GGUF

This repo contains GGUF format model files for abacusai/Smaug-Llama-3-70B-Instruct-32K.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
Smaug-Llama-3-70B-Instruct-32K-Q2_K.gguf Q2_K 26.375 GB smallest, significant quality loss - not recommended for most purposes
Smaug-Llama-3-70B-Instruct-32K-Q3_K_S.gguf Q3_K_S 30.912 GB very small, high quality loss
Smaug-Llama-3-70B-Instruct-32K-Q3_K_M.gguf Q3_K_M 34.267 GB very small, high quality loss
Smaug-Llama-3-70B-Instruct-32K-Q3_K_L.gguf Q3_K_L 37.141 GB small, substantial quality loss
Smaug-Llama-3-70B-Instruct-32K-Q4_0.gguf Q4_0 39.970 GB legacy; small, very high quality loss - prefer using Q3_K_M
Smaug-Llama-3-70B-Instruct-32K-Q4_K_S.gguf Q4_K_S 40.347 GB small, greater quality loss
Smaug-Llama-3-70B-Instruct-32K-Q4_K_M.gguf Q4_K_M 42.520 GB medium, balanced quality - recommended
Smaug-Llama-3-70B-Instruct-32K-Q5_0.gguf Q5_0 48.657 GB legacy; medium, balanced quality - prefer using Q4_K_M
Smaug-Llama-3-70B-Instruct-32K-Q5_K_S.gguf Q5_K_S 48.657 GB large, low quality loss - recommended
Smaug-Llama-3-70B-Instruct-32K-Q5_K_M.gguf Q5_K_M 49.950 GB large, very low quality loss - recommended
Smaug-Llama-3-70B-Instruct-32K-Q8_0 Q6_K 74.975 GB very large, extremely low quality loss
Smaug-Llama-3-70B-Instruct-32K-Q6_K Q8_0 57.888 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Smaug-Llama-3-70B-Instruct-32K-GGUF --include "Smaug-Llama-3-70B-Instruct-32K-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Smaug-Llama-3-70B-Instruct-32K-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'