TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

abideen/NexoNimbus-MoE-2x7B - GGUF

This repo contains GGUF format model files for abideen/NexoNimbus-MoE-2x7B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
NexoNimbus-MoE-2x7B-Q2_K.gguf Q2_K 4.761 GB smallest, significant quality loss - not recommended for most purposes
NexoNimbus-MoE-2x7B-Q3_K_S.gguf Q3_K_S 5.588 GB very small, high quality loss
NexoNimbus-MoE-2x7B-Q3_K_M.gguf Q3_K_M 6.207 GB very small, high quality loss
NexoNimbus-MoE-2x7B-Q3_K_L.gguf Q3_K_L 6.730 GB small, substantial quality loss
NexoNimbus-MoE-2x7B-Q4_0.gguf Q4_0 7.281 GB legacy; small, very high quality loss - prefer using Q3_K_M
NexoNimbus-MoE-2x7B-Q4_K_S.gguf Q4_K_S 7.342 GB small, greater quality loss
NexoNimbus-MoE-2x7B-Q4_K_M.gguf Q4_K_M 7.783 GB medium, balanced quality - recommended
NexoNimbus-MoE-2x7B-Q5_0.gguf Q5_0 8.874 GB legacy; medium, balanced quality - prefer using Q4_K_M
NexoNimbus-MoE-2x7B-Q5_K_S.gguf Q5_K_S 8.874 GB large, low quality loss - recommended
NexoNimbus-MoE-2x7B-Q5_K_M.gguf Q5_K_M 9.133 GB large, very low quality loss - recommended
NexoNimbus-MoE-2x7B-Q6_K.gguf Q6_K 10.567 GB very large, extremely low quality loss
NexoNimbus-MoE-2x7B-Q8_0.gguf Q8_0 13.686 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/NexoNimbus-MoE-2x7B-GGUF --include "NexoNimbus-MoE-2x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/NexoNimbus-MoE-2x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
79
GGUF
Model size
12.9B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tensorblock/NexoNimbus-MoE-2x7B-GGUF

Quantized
(2)
this model