TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

abacusai/MetaMath-bagel-34b-v0.2-c1500 - GGUF

This repo contains GGUF format model files for abacusai/MetaMath-bagel-34b-v0.2-c1500.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

[INST] <<SYS>>
{system_prompt}
<</SYS>>

{prompt} [/INST]

Model file specification

Filename Quant type File Size Description
MetaMath-bagel-34b-v0.2-c1500-Q2_K.gguf Q2_K 12.825 GB smallest, significant quality loss - not recommended for most purposes
MetaMath-bagel-34b-v0.2-c1500-Q3_K_S.gguf Q3_K_S 14.960 GB very small, high quality loss
MetaMath-bagel-34b-v0.2-c1500-Q3_K_M.gguf Q3_K_M 16.655 GB very small, high quality loss
MetaMath-bagel-34b-v0.2-c1500-Q3_K_L.gguf Q3_K_L 18.139 GB small, substantial quality loss
MetaMath-bagel-34b-v0.2-c1500-Q4_0.gguf Q4_0 19.467 GB legacy; small, very high quality loss - prefer using Q3_K_M
MetaMath-bagel-34b-v0.2-c1500-Q4_K_S.gguf Q4_K_S 19.599 GB small, greater quality loss
MetaMath-bagel-34b-v0.2-c1500-Q4_K_M.gguf Q4_K_M 20.659 GB medium, balanced quality - recommended
MetaMath-bagel-34b-v0.2-c1500-Q5_0.gguf Q5_0 23.708 GB legacy; medium, balanced quality - prefer using Q4_K_M
MetaMath-bagel-34b-v0.2-c1500-Q5_K_S.gguf Q5_K_S 23.708 GB large, low quality loss - recommended
MetaMath-bagel-34b-v0.2-c1500-Q5_K_M.gguf Q5_K_M 24.322 GB large, very low quality loss - recommended
MetaMath-bagel-34b-v0.2-c1500-Q6_K.gguf Q6_K 28.214 GB very large, extremely low quality loss
MetaMath-bagel-34b-v0.2-c1500-Q8_0.gguf Q8_0 36.542 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF --include "MetaMath-bagel-34b-v0.2-c1500-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
220
GGUF
Model size
34.4B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF

Quantized
(1)
this model

Dataset used to train tensorblock/MetaMath-bagel-34b-v0.2-c1500-GGUF