Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
netcat420/MFANN-Llama3.1-Abliterated-Slerp-TIES - GGUF
This repo contains GGUF format model files for netcat420/MFANN-Llama3.1-Abliterated-Slerp-TIES.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q2_K.gguf | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q3_K_S.gguf | Q3_K_S | 3.665 GB | very small, high quality loss |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q3_K_M.gguf | Q3_K_M | 4.019 GB | very small, high quality loss |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q3_K_L.gguf | Q3_K_L | 4.322 GB | small, substantial quality loss |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q4_0.gguf | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q4_K_S.gguf | Q4_K_S | 4.693 GB | small, greater quality loss |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q4_K_M.gguf | Q4_K_M | 4.921 GB | medium, balanced quality - recommended |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q5_0.gguf | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q5_K_S.gguf | Q5_K_S | 5.599 GB | large, low quality loss - recommended |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q5_K_M.gguf | Q5_K_M | 5.733 GB | large, very low quality loss - recommended |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q6_K.gguf | Q6_K | 6.596 GB | very large, extremely low quality loss |
MFANN-Llama3.1-Abliterated-Slerp-TIES-Q8_0.gguf | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/MFANN-Llama3.1-Abliterated-Slerp-TIES-GGUF --include "MFANN-Llama3.1-Abliterated-Slerp-TIES-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/MFANN-Llama3.1-Abliterated-Slerp-TIES-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 15
Model tree for tensorblock/MFANN-Llama3.1-Abliterated-Slerp-TIES-GGUF
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard42.930
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard27.600
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard5.970
- acc_norm on GPQA (0-shot)Open LLM Leaderboard5.590
- acc_norm on MuSR (0-shot)Open LLM Leaderboard4.590
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard28.130