Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4 - GGUF
This repo contains GGUF format model files for Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q2_K.gguf | Q2_K | 5.770 GB | smallest, significant quality loss - not recommended for most purposes |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q3_K_S.gguf | Q3_K_S | 6.660 GB | very small, high quality loss |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q3_K_M.gguf | Q3_K_M | 7.339 GB | very small, high quality loss |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q3_K_L.gguf | Q3_K_L | 7.925 GB | small, substantial quality loss |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4_0.gguf | Q4_0 | 8.518 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4_K_S.gguf | Q4_K_S | 8.573 GB | small, greater quality loss |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4_K_M.gguf | Q4_K_M | 8.988 GB | medium, balanced quality - recommended |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q5_0.gguf | Q5_0 | 10.267 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q5_K_S.gguf | Q5_K_S | 10.267 GB | large, low quality loss - recommended |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q5_K_M.gguf | Q5_K_M | 10.509 GB | large, very low quality loss - recommended |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q6_K.gguf | Q6_K | 12.125 GB | very large, extremely low quality loss |
Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q8_0.gguf | Q8_0 | 15.702 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-GGUF --include "Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 418
Model tree for tensorblock/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-GGUF
Base model
Qwen/Qwen2.5-14B
Finetuned
Qwen/Qwen2.5-14B-Instruct
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard82.920
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard48.050
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard0.000
- acc_norm on GPQA (0-shot)Open LLM Leaderboard12.300
- acc_norm on MuSR (0-shot)Open LLM Leaderboard13.150
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard44.650