TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Sao10K/Fimbulvetr-11B-v2 - GGUF

This repo contains GGUF format model files for Sao10K/Fimbulvetr-11B-v2.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
Fimbulvetr-11B-v2-Q2_K.gguf Q2_K 4.003 GB smallest, significant quality loss - not recommended for most purposes
Fimbulvetr-11B-v2-Q3_K_S.gguf Q3_K_S 4.665 GB very small, high quality loss
Fimbulvetr-11B-v2-Q3_K_M.gguf Q3_K_M 5.196 GB very small, high quality loss
Fimbulvetr-11B-v2-Q3_K_L.gguf Q3_K_L 5.651 GB small, substantial quality loss
Fimbulvetr-11B-v2-Q4_0.gguf Q4_0 6.072 GB legacy; small, very high quality loss - prefer using Q3_K_M
Fimbulvetr-11B-v2-Q4_K_S.gguf Q4_K_S 6.119 GB small, greater quality loss
Fimbulvetr-11B-v2-Q4_K_M.gguf Q4_K_M 6.462 GB medium, balanced quality - recommended
Fimbulvetr-11B-v2-Q5_0.gguf Q5_0 7.397 GB legacy; medium, balanced quality - prefer using Q4_K_M
Fimbulvetr-11B-v2-Q5_K_S.gguf Q5_K_S 7.397 GB large, low quality loss - recommended
Fimbulvetr-11B-v2-Q5_K_M.gguf Q5_K_M 7.598 GB large, very low quality loss - recommended
Fimbulvetr-11B-v2-Q6_K.gguf Q6_K 8.805 GB very large, extremely low quality loss
Fimbulvetr-11B-v2-Q8_0.gguf Q8_0 11.404 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Fimbulvetr-11B-v2-GGUF --include "Fimbulvetr-11B-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Fimbulvetr-11B-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
179
GGUF
Model size
10.7B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for tensorblock/Fimbulvetr-11B-v2-GGUF

Quantized
(11)
this model