TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Kortix/FastApply-1.5B-v1.0 - GGUF

This repo contains GGUF format model files for Kortix/FastApply-1.5B-v1.0.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
FastApply-1.5B-v1.0-Q2_K.gguf Q2_K 0.676 GB smallest, significant quality loss - not recommended for most purposes
FastApply-1.5B-v1.0-Q3_K_S.gguf Q3_K_S 0.761 GB very small, high quality loss
FastApply-1.5B-v1.0-Q3_K_M.gguf Q3_K_M 0.824 GB very small, high quality loss
FastApply-1.5B-v1.0-Q3_K_L.gguf Q3_K_L 0.880 GB small, substantial quality loss
FastApply-1.5B-v1.0-Q4_0.gguf Q4_0 0.935 GB legacy; small, very high quality loss - prefer using Q3_K_M
FastApply-1.5B-v1.0-Q4_K_S.gguf Q4_K_S 0.940 GB small, greater quality loss
FastApply-1.5B-v1.0-Q4_K_M.gguf Q4_K_M 0.986 GB medium, balanced quality - recommended
FastApply-1.5B-v1.0-Q5_0.gguf Q5_0 1.099 GB legacy; medium, balanced quality - prefer using Q4_K_M
FastApply-1.5B-v1.0-Q5_K_S.gguf Q5_K_S 1.099 GB large, low quality loss - recommended
FastApply-1.5B-v1.0-Q5_K_M.gguf Q5_K_M 1.125 GB large, very low quality loss - recommended
FastApply-1.5B-v1.0-Q6_K.gguf Q6_K 1.273 GB very large, extremely low quality loss
FastApply-1.5B-v1.0-Q8_0.gguf Q8_0 1.647 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/FastApply-1.5B-v1.0-GGUF --include "FastApply-1.5B-v1.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/FastApply-1.5B-v1.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
16
GGUF
Model size
1.54B params
Architecture
qwen2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tensorblock/FastApply-1.5B-v1.0-GGUF

Quantized
(6)
this model