metadata
base_model: BioMistral/BioMistral-7B-DARE
library_name: transformers
tags:
- mergekit
- merge
- dare
- medical
- biology
- TensorBlock
- GGUF
license: apache-2.0
datasets:
- pubmed
language:
- en
- fr
- nl
- es
- it
- pl
- ro
- de
pipeline_tag: text-generation
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
BioMistral/BioMistral-7B-DARE - GGUF
This repo contains GGUF format model files for BioMistral/BioMistral-7B-DARE.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<s>[INST] {prompt} [/INST]
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
BioMistral-7B-DARE-Q2_K.gguf | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes |
BioMistral-7B-DARE-Q3_K_S.gguf | Q3_K_S | 3.165 GB | very small, high quality loss |
BioMistral-7B-DARE-Q3_K_M.gguf | Q3_K_M | 3.519 GB | very small, high quality loss |
BioMistral-7B-DARE-Q3_K_L.gguf | Q3_K_L | 3.822 GB | small, substantial quality loss |
BioMistral-7B-DARE-Q4_0.gguf | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
BioMistral-7B-DARE-Q4_K_S.gguf | Q4_K_S | 4.140 GB | small, greater quality loss |
BioMistral-7B-DARE-Q4_K_M.gguf | Q4_K_M | 4.368 GB | medium, balanced quality - recommended |
BioMistral-7B-DARE-Q5_0.gguf | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
BioMistral-7B-DARE-Q5_K_S.gguf | Q5_K_S | 4.998 GB | large, low quality loss - recommended |
BioMistral-7B-DARE-Q5_K_M.gguf | Q5_K_M | 5.131 GB | large, very low quality loss - recommended |
BioMistral-7B-DARE-Q6_K.gguf | Q6_K | 5.942 GB | very large, extremely low quality loss |
BioMistral-7B-DARE-Q8_0.gguf | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/BioMistral-7B-DARE-GGUF --include "BioMistral-7B-DARE-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/BioMistral-7B-DARE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'