mini_eurosat
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on a EuroSat dataset with 100 image in each class. It achieves the following results on the evaluation set:
- Train Loss: 0.2701
- Train Accuracy: 0.9158
- Validation Loss: 0.3930
- Validation Accuracy: 0.9233
- Epoch: 4
Model description
More information needed
Intended uses & limitations
This is just a demo for learning purpose and should not be used in productions
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1065, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
1.6612 | 0.4653 | 1.0561 | 0.6964 | 0 |
0.7501 | 0.7761 | 0.6024 | 0.8248 | 1 |
0.4255 | 0.8559 | 0.4709 | 0.8784 | 2 |
0.3095 | 0.8941 | 0.3980 | 0.9063 | 3 |
0.2701 | 0.9158 | 0.3930 | 0.9233 | 4 |
Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tejshahi/mini_eurosat
Base model
google/vit-base-patch16-224-in21k