mini_eurosat

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on a EuroSat dataset with 100 image in each class. It achieves the following results on the evaluation set:

  • Train Loss: 0.2701
  • Train Accuracy: 0.9158
  • Validation Loss: 0.3930
  • Validation Accuracy: 0.9233
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

This is just a demo for learning purpose and should not be used in productions

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1065, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
1.6612 0.4653 1.0561 0.6964 0
0.7501 0.7761 0.6024 0.8248 1
0.4255 0.8559 0.4709 0.8784 2
0.3095 0.8941 0.3980 0.9063 3
0.2701 0.9158 0.3930 0.9233 4

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tejshahi/mini_eurosat

Finetuned
(1791)
this model