Inspired by sentosa/ZNV-Embedding: A prompt-engineering way to aggregate 'title' info into embeddings.(modifications have been implemented) To do:
- Re-train the dense layers.
- Re-define a more effective concatenation.
- Adopt AnglE to finetune the tiny-llama.
- Loss function.
To run TE_Embedding model:
import os
from transformers import (AutoConfig,
AutoTokenizer,AutoModelForCausalLM
)
import torch
import torch.nn.functional as F
import numpy as np
class TEmbeddingModel(torch.nn.Module):
def __init__(self, model_name_or_path):
super(TEmbeddingModel, self).__init__()
self.prompt_prefix = "Reading the below text and answer questions:\n"
self.prompt_suffixes = ["\n1.One word to summarize the above text:",
"\n2.The deeper meaning of the above text:"]
self.hidden_size = 2048 #depends on the model
self.model_name_or_path = model_name_or_path
self.linear_suffixes = torch.nn.ModuleList(
[torch.nn.Linear(self.hidden_size, self.hidden_size//len(self.prompt_suffixes))
for _ in range(len(self.prompt_suffixes))])
self.tokenizer, self.llama = self.load_llama()
# self.device = torch.device('cuda')
self.tanh = torch.nn.Tanh()
self.suffixes_ids = []
self.suffixes_ids_len = []
self.suffixes_len = 0
for suffix in self.prompt_suffixes:
ids = self.tokenizer(suffix, return_tensors="pt")["input_ids"].tolist()[0]
self.suffixes_ids += ids
self.suffixes_ids_len.append(len(ids))
self.suffixes_len += len(ids)
self.suffixes_ones = torch.ones(self.suffixes_len)
self.suffixes_ids = torch.tensor(self.suffixes_ids)
linear_file = ".//TE//linears"
load_layers = torch.load(linear_file)
model_state = self.state_dict()
model_state.update(load_layers)
self.load_state_dict(model_state, strict=False)
def load_llama(self):
llm_path = os.path.join(self.model_name_or_path)
config = AutoConfig.from_pretrained(llm_path)
tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(
llm_path,
config=config,
low_cpu_mem_usage=True,
device_map="auto",
)
model.config.use_cache = False
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
return tokenizer, model
def forward(self, sentences):
prompts_embeddings = []
sentences = [self.prompt_prefix + s for s in sentences] #concat前缀
inputs = self.tokenizer(sentences, max_length=256, padding=True, truncation=True,
return_tensors='pt')
attention_mask = inputs["attention_mask"]
input_ids = inputs["input_ids"]
batch_size = len(sentences)
suffixes_ones = self.suffixes_ones.unsqueeze(0)
suffixes_ones = suffixes_ones.repeat(batch_size, 1)
device = next(self.parameters()).device
attention_mask = torch.cat([attention_mask, suffixes_ones], dim=-1).to(device)
suffixes_ids = self.suffixes_ids.unsqueeze(0)
suffixes_ids = suffixes_ids.repeat(batch_size, 1)
input_ids = torch.cat([input_ids, suffixes_ids], dim=-1) #to("cuda")
last_hidden_state = self.llama.base_model(attention_mask=attention_mask, input_ids=input_ids).last_hidden_state.to(device)
index = -1
for i in range(len(self.suffixes_ids_len)):
embedding = last_hidden_state[:, index, :]
embedding = self.linear_suffixes[i](embedding)
prompts_embeddings.append(embedding)
index -= self.suffixes_ids_len[-i-1]
output_embedding = torch.cat(prompts_embeddings, dim=-1)
output_embedding = self.tanh(output_embedding)
output_embedding = F.normalize(output_embedding, p=2, dim=1)
return output_embedding
def encode(self, sentences, batch_size=10, **kwargs):
size = len(sentences)
embeddings = None
handled = 0
while handled < size:
tokens = sentences[handled:handled + batch_size]
output_embeddings = self.forward(tokens)
result = output_embeddings.detach().cpu().numpy()
handled += result.shape[0] # <=10
if embeddings is not None:
embeddings = np.concatenate((embeddings, result), axis=0)
else:
embeddings = result
return embeddings
if __name__ == "__main__":
# TE_model = TEmbeddingModel("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
TE_model = TEmbeddingModel("technicolor/TE_Tinyllama")
TE_model.eval()
with torch.no_grad():
output = TE_model(["Hello", "Nice to meet you"])
cos_sim = F.cosine_similarity(output[0],output[1],dim=0)
print(cos_sim)
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.