|
---
|
|
license: apache-2.0
|
|
base_model: openai/whisper-large-v3
|
|
tags:
|
|
- generated_from_trainer
|
|
- whisper
|
|
datasets:
|
|
- techiaith/commonvoice_18_0_cy
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded
|
|
results:
|
|
- task:
|
|
name: Automatic Speech Recognition
|
|
type: automatic-speech-recognition
|
|
dataset:
|
|
name: DewiBrynJones/commonvoice_18_0_cy default
|
|
type: DewiBrynJones/commonvoice_18_0_cy
|
|
args: default
|
|
metrics:
|
|
- name: Wer
|
|
type: wer
|
|
value: 0.185
|
|
language:
|
|
- cy
|
|
pipeline_tag: automatic-speech-recognition
|
|
---
|
|
|
|
# whisper-large-v3-ft-cv-cy |
|
|
|
This model is a version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) fine-tuned with the |
|
`train_all` and `other_with_excluded` custom splits from [techiaith/commonvoice_18_0_cy](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy) |
|
|
|
It achieves the following results on the Common Voice for Welsh release 18's standard test set: |
|
|
|
- WER: 18.50 |
|
- CER: 5.32 |
|
|
|
N.B. this model performs considerably worse on English language speech, but better on Welsh than a [bilingual model](https://huggingface.co/techiaith/whisper-large-v3-ft-cv-cy-en) |
|
|
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
transcriber = pipeline("automatic-speech-recognition", model="techiaith/whisper-large-v3-ft-cv-cy") |
|
result = transcriber(<path or url to soundfile>) |
|
print (result) |
|
``` |
|
|
|
`{'text': 'Mae hen wlad fy nhadau yn annwyl i mi.'}` |